Pregled bibliografske jedinice broj: 1097711
Modeling the toxicity of pollutants mixtures for risk assessment: a review
Modeling the toxicity of pollutants mixtures for risk assessment: a review // Environmental chemistry letters, 19 (2021), 2; 1629-1655 doi:10.1007/s10311-020-01107-5 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1097711 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Modeling the toxicity of pollutants mixtures for
risk assessment: a review
Autori
Sigurnjak Bureš, Marija ; Cvetnić, Matija ; Miloloža, Martina ; Kučić Grgić, Dajana ; Markić, Marinko ; Kušić, Hrvoje ; Bolanča, Tomislav ; Rogošić, Marko ; Ukić, Šime
Izvornik
Environmental chemistry letters (1610-3653) 19
(2021), 2;
1629-1655
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
mixture toxicity ; joint action ; concentration addition ; independent action ; QSAR ; toxicity prediction
Sažetak
The occurrence of contaminants in natural waters is a potential threat to the environment. Since contaminants are commonly present as mixtures, numerous interactions may occur resulting in lower or, more dangerously, higher toxicity by comparison with single substances. The toxicity of multicomponent systems can be determined experimentally, but toxicity prediction by suitable models is faster, environmentally friendly, and less expensive. Here we review approaches and models, which can be utilized in assessing toxicity of chemical mixtures. In the irst part, the assessment of toxicity of chemical mixtures and possible interactions between mixture constituents are discussed. The second part covers conventional modeling, including the simplest, and most common toxicity models, namely concentration addition and independent action models, and derived integrated models. The third part presents advanced toxicity modeling. We review the quantitative structure–activity relationship approach and its elements: calculation of molecular descriptors and their selection with principal component analysis and genetic algorithm. Modeling with artificial neural networks is also discussed. We present hybrid models which combine the fuzzy set theory approach with the conventional concentration addition and independent action models. We conclude that conventional models: concentration addition and independent action model, are still most commonly used ; integrated models are more accurate compared to conventional ones, even though their application requires more data ; advanced numerical methods such as genetic algorithm, neural networks, and fuzzy set theory give a new perspective on toxicity prediction, and no universal tool for toxicity assessment has been developed so far.
Izvorni jezik
Engleski
Znanstvena područja
Kemija, Kemijsko inženjerstvo, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-9661 - Primjena naprednih tehnologija obrade voda za uklanjanje mikroplastike (AdWaTMiR) (Bolanča, Tomislav, HRZZ - 2019-04) ( CroRIS)
HRZZ-IP-2014-09-7992 - Modeliranje okolišnih aspekata napredne obrade voda za razgradnju prioritetnih onečišćivala (MEAoWT) (Bolanča, Tomislav, HRZZ ) ( CroRIS)
Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb,
Sveučilište Sjever, Koprivnica
Profili:
Matija Cvetnić
(autor)
Marko Rogošić
(autor)
Šime Ukić
(autor)
Marinko Markić
(autor)
Martina Miloloža
(autor)
Marija Sigurnjak
(autor)
Dajana Kučić Grgić
(autor)
Tomislav Bolanča
(autor)
Hrvoje Kušić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- CA Search (Chemical Abstracts)