Pregled bibliografske jedinice broj: 1097445
On Wigner's theorem in smooth normed spaces
On Wigner's theorem in smooth normed spaces // Aequationes mathematicae, 94 (2020), 1257-1267 doi:10.1007/s00010-020-00727-0 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1097445 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On Wigner's theorem in smooth normed spaces
Autori
Ilišević, Dijana ; Turnšek, Aleksej
Izvornik
Aequationes mathematicae (0001-9054) 94
(2020);
1257-1267
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Wigner’s theorem ; isometry ; normed space
Sažetak
In this note we generalize the well-known Wigner's unitary-anti\-unitary theorem. For smooth normed spaces $X$ and $Y$ and a surjective mapping $f \colon X\to Y$ such that $| [f(x), f(y)]|=|[x, y]|$, $x, y\in X$, where $[\cdot, \cdot]$ is the unique semi-inner product, we show that $f$ is phase equivalent to either a linear or an anti-linear surjective isometry. When $X$ and $Y$ are smooth real normed spaces and $Y$ is strictly convex, we show that Wigner's theorem is equivalent to $\{; ; ; \|f(x)+f(y)\|, \|f(x)- f(y)\|\}; ; ; =\{; ; ; \|x+y\|, \|x-y\|\}; ; ; $, $x, y\in X$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-1046 - Operatori na C*-algebrama i Hilbertovim modulima (OCAHM) (Bakić, Damir, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Dijana Ilišević
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts