Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1096627

Investigating the common features of COVID-19 highly infected countries using k-means cluster analysis


Žmuk, Berislav; Jošić, Hrvoje
Investigating the common features of COVID-19 highly infected countries using k-means cluster analysis // Proceedings of The International Scientific Conference Trade Perspectives 2020: The interdependence of COVID-19 pandemic and international trade / Baković, Tomislav ; Naletina, Dora ; Petljak, Kristina (ur.).
Zagreb: Ekonomski fakultet Sveučilišta u Zagrebu, 2020. str. 93-108 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1096627 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Investigating the common features of COVID-19 highly infected countries using k-means cluster analysis

Autori
Žmuk, Berislav ; Jošić, Hrvoje

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of The International Scientific Conference Trade Perspectives 2020: The interdependence of COVID-19 pandemic and international trade / Baković, Tomislav ; Naletina, Dora ; Petljak, Kristina - Zagreb : Ekonomski fakultet Sveučilišta u Zagrebu, 2020, 93-108

ISBN
978-953-346-149-6

Skup
Trade Perspectives 2020: The interdependence of COVID-19 pandemic and international trade

Mjesto i datum
Zagreb, Hrvatska, 26.11.2020. - 27.11.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
COVID-19 ; K-means cluster analysis ; International tourism

Sažetak
One could ask what are the common features of COVID-19 highly infected countries. Various researchers have tackled this research problem taking into account a range of different variables. This paper investigates the properties of COVID-19 highly infected countries using k-means cluster analysis. The optimum number of clusters was identified using the two-step cluster procedure according to the Schwarz's Bayesian Information Criterion (BIC) with the log-likelihood distance measure. Results of the analysis have shown that developed, tourism-oriented countries with elderly population structure, improved human rights and index of freedom are more vulnerable to the risk of COVID-19 contagion. Limitation of the paper is related to the fact that data for COVID-19 common features were not available for the year 2020 but have been provided for the most recent year, mostly 2018. The results obtained from this analysis have important policy implications for economic and health care policy makers.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija



POVEZANOST RADA


Ustanove:
Ekonomski fakultet, Zagreb

Profili:

Avatar Url Berislav Žmuk (autor)

Avatar Url Hrvoje Jošić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Žmuk, Berislav; Jošić, Hrvoje
Investigating the common features of COVID-19 highly infected countries using k-means cluster analysis // Proceedings of The International Scientific Conference Trade Perspectives 2020: The interdependence of COVID-19 pandemic and international trade / Baković, Tomislav ; Naletina, Dora ; Petljak, Kristina (ur.).
Zagreb: Ekonomski fakultet Sveučilišta u Zagrebu, 2020. str. 93-108 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Žmuk, B. & Jošić, H. (2020) Investigating the common features of COVID-19 highly infected countries using k-means cluster analysis. U: Baković, T., Naletina, D. & Petljak, K. (ur.)Proceedings of The International Scientific Conference Trade Perspectives 2020: The interdependence of COVID-19 pandemic and international trade.
@article{article, author = {\v{Z}muk, Berislav and Jo\v{s}i\'{c}, Hrvoje}, year = {2020}, pages = {93-108}, keywords = {COVID-19, K-means cluster analysis, International tourism}, isbn = {978-953-346-149-6}, title = {Investigating the common features of COVID-19 highly infected countries using k-means cluster analysis}, keyword = {COVID-19, K-means cluster analysis, International tourism}, publisher = {Ekonomski fakultet Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Zagreb, Hrvatska} }
@article{article, author = {\v{Z}muk, Berislav and Jo\v{s}i\'{c}, Hrvoje}, year = {2020}, pages = {93-108}, keywords = {COVID-19, K-means cluster analysis, International tourism}, isbn = {978-953-346-149-6}, title = {Investigating the common features of COVID-19 highly infected countries using k-means cluster analysis}, keyword = {COVID-19, K-means cluster analysis, International tourism}, publisher = {Ekonomski fakultet Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Zagreb, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font