Pregled bibliografske jedinice broj: 1096151
Exploring the Possibility of a Recovery of Physics Process Properties from a Neural Network Model
Exploring the Possibility of a Recovery of Physics Process Properties from a Neural Network Model // Entropy (Basel. Online), 22 (2020), 9; 994, 14 doi:10.3390/e22090994 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1096151 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Exploring the Possibility of a Recovery of Physics
Process Properties from a Neural Network Model
Autori
Jerčić, Marko ; Poljak, Nikola
Izvornik
Entropy (Basel. Online) (1099-4300) 22
(2020), 9;
994, 14
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
neural network model
Sažetak
The application of machine learning methods to particle physics often does not provide enough understanding of the underlying physics. An interpretable model which provides a way to improve our knowledge of the mechanism governing a physical system directly from the data can be very useful. In this paper, we introduce a simple artificial physical generator based on the Quantum chromodynamical (QCD) fragmentation process. The data simulated from the generator are then passed to a neural network model which we base only on the partial knowledge of the generator. We aimed to see if the interpretation of the generated data can provide the probability distributions of basic processes of such a physical system. This way, some of the information we omitted from the network model on purpose is recovered. We believe this approach can be beneficial in the analysis of real QCD processes.
Izvorni jezik
Engleski
Znanstvena područja
Fizika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus