Pregled bibliografske jedinice broj: 1096094
Predicting Peach Fruit Ripeness Using Explainable Machine Learning
Predicting Peach Fruit Ripeness Using Explainable Machine Learning // Proceedings of the 31st International DAAAM Symposium "Intelligent Manufacturing & Automation"
Mostar, Bosna i Hercegovina ; online: DAAAM International Vienna, 2020. str. 0717-0723 doi:10.2507/31st.daaam.proceedings.099 (demonstracija, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1096094 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Predicting Peach Fruit Ripeness Using Explainable
Machine Learning
Autori
Ljubobratovic, Dejan ; Guoxiang, Zhang ; Brkic Bakaric, Marija ; Jemric, Tomislav ; Matetic, Maja
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 31st International DAAAM Symposium "Intelligent Manufacturing & Automation"
/ - : DAAAM International Vienna, 2020, 0717-0723
ISBN
978-3-902734-29-7
Skup
31st International DAAAM Virtual Symposium "Intelligent Manufacturing & Automation"
Mjesto i datum
Mostar, Bosna i Hercegovina ; online, 21.10.2020. - 24.10.2020
Vrsta sudjelovanja
Demonstracija
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
interpretability ; explainable machine learning ; predicting fruit ripeness ; peach impedance
Sažetak
Predicting fruit ripeness allows us to choose the optimal time to harvest. The parameter by which peach ripeness is commonly represented is its firmness. As traditional methods for determining firmness of peaches are destructive, this paper uses an alternative method for determining peach ripeness which is based on peach impedance, as recommended by the domain expert. The data set on which the data analysis is performed contains measurements obtained from a couple of hundred fruit measurements, which also include peach impedance. In our data analysis, we use one of the high accuracy machine learning models, which are called black box models and which are characterized by low interpretability. The paper presents the results of applying a black box type machine learning method, as well as methods for interpreting black box models which facilitate understanding of the model behavior for domain experts, i.e. Variable importance, Tree Surrogate, Local Interpretable Model- Agnostic Explanations and Break Down.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Poljoprivreda (agronomija), Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
--uniri-drustv-18-122 - Dubinska analiza tokova podataka za pametno upravljanje hladnim lancem (SmaCC) (SMACC) (Matetić, Maja) ( CroRIS)
Ustanove:
Agronomski fakultet, Zagreb,
Fakultet informatike i digitalnih tehnologija, Rijeka
Profili:
Tomislav Jemrić
(autor)
Dejan Ljubobratović
(autor)
Maja Matetić
(autor)
Marija Brkić Bakarić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus