Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1095548

Dirac index and associated cycles of Harish-Chandra modules


Mehdi, Salah; Pandžić, Pavle; Vogan, David; Zierau, Roger
Dirac index and associated cycles of Harish-Chandra modules // Advances in mathematics, 361 (2020), 106917, 34 doi:10.1016/j.aim.2019.106917 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1095548 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Dirac index and associated cycles of Harish-Chandra modules

Autori
Mehdi, Salah ; Pandžić, Pavle ; Vogan, David ; Zierau, Roger

Izvornik
Advances in mathematics (0001-8708) 361 (2020); 106917, 34

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
(g, K)-module , Dirac index , Equivariant K-theory , Nilpotent orbit , Associated cycle , Springer correspondence

Sažetak
Let G_R be a simple real linear Lie group with maximal compact subgroup K_R and assume that rank(G_R)=rank(K_R). For any representation X of Gelfand-Kirillov dimension 1/2(dim G_R/K_R), we consider the polynomial on the dual of a compact Cartan subalgebra given by the dimension of the Dirac index of members of the coherent family containing X. Under a technical condition involving the Springer correspondence, we establish an explicit relationship between this polynomial and the multiplicities of the irreducible components occurring in the associated cycle of X. This relationship was conjectured in [12].

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
--KK.01.1.1.01.0004 - Provedba vrhunskih istraživanja u sklopu Znanstvenog centra izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri (QuantiXLie) (Buljan, Hrvoje; Pandžić, Pavle) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Pavle Pandžić (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com doi.org

Citiraj ovu publikaciju:

Mehdi, Salah; Pandžić, Pavle; Vogan, David; Zierau, Roger
Dirac index and associated cycles of Harish-Chandra modules // Advances in mathematics, 361 (2020), 106917, 34 doi:10.1016/j.aim.2019.106917 (međunarodna recenzija, članak, znanstveni)
Mehdi, S., Pandžić, P., Vogan, D. & Zierau, R. (2020) Dirac index and associated cycles of Harish-Chandra modules. Advances in mathematics, 361, 106917, 34 doi:10.1016/j.aim.2019.106917.
@article{article, author = {Mehdi, Salah and Pand\v{z}i\'{c}, Pavle and Vogan, David and Zierau, Roger}, year = {2020}, pages = {34}, DOI = {10.1016/j.aim.2019.106917}, chapter = {106917}, keywords = {(g, K)-module , Dirac index , Equivariant K-theory , Nilpotent orbit , Associated cycle , Springer correspondence}, journal = {Advances in mathematics}, doi = {10.1016/j.aim.2019.106917}, volume = {361}, issn = {0001-8708}, title = {Dirac index and associated cycles of Harish-Chandra modules}, keyword = {(g, K)-module , Dirac index , Equivariant K-theory , Nilpotent orbit , Associated cycle , Springer correspondence}, chapternumber = {106917} }
@article{article, author = {Mehdi, Salah and Pand\v{z}i\'{c}, Pavle and Vogan, David and Zierau, Roger}, year = {2020}, pages = {34}, DOI = {10.1016/j.aim.2019.106917}, chapter = {106917}, keywords = {(g, K)-module , Dirac index , Equivariant K-theory , Nilpotent orbit , Associated cycle , Springer correspondence}, journal = {Advances in mathematics}, doi = {10.1016/j.aim.2019.106917}, volume = {361}, issn = {0001-8708}, title = {Dirac index and associated cycles of Harish-Chandra modules}, keyword = {(g, K)-module , Dirac index , Equivariant K-theory , Nilpotent orbit , Associated cycle , Springer correspondence}, chapternumber = {106917} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font