Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1094880

A Szemeredi-type theorem for subsets of the unit cube


Durcik, Polona; Kovač, Vjekoslav
A Szemeredi-type theorem for subsets of the unit cube // Analysis & PDE, 15 (2022), 2; 507-549 doi:10.2140/apde.2022.15.507 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1094880 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A Szemeredi-type theorem for subsets of the unit cube

Autori
Durcik, Polona ; Kovač, Vjekoslav

Izvornik
Analysis & PDE (1948-206X) 15 (2022), 2; 507-549

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Euclidean Ramsey theory ; arithmetic progression ; density theorem ; multilinear estimate ; singular integral ; oscillatory integral

Sažetak
We investigate gaps of n-term arithmetic progressions x, x+y, ..., x+(n-1)y inside a positive measure subset A of the unit cube [0, 1]^d. If lengths of their gaps y are evaluated in the l^p-norm for any p other than 1, 2, ..., n-1, and infinity, and if the dimension d is large enough, then we show that the numbers |y|_p attain all values from an interval, the length of which depends only on n, p, d, and the measure of A. Known counterexamples prevent generalizations of this result to the remaining values of the exponent p. We also give an explicit bound for the length of the aforementioned interval. The proof makes the bound depend on the currently available bounds in Szemeredi's theorem on the integers, which are used as a black box. A key ingredient of the proof are power-type cancellation estimates for operators resembling the multilinear Hilbert transforms. As a byproduct of the approach we obtain a quantitative improvement of the corresponding (previously known) result for side lengths of n-dimensional cubes with vertices lying in a positive measure subset of ([0, 1]^2)^n.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-UIP-2017-05-4129 - Multilinearna i nelinearna harmonijska analiza i primjene (MUNHANAP) (Kovač, Vjekoslav, HRZZ ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Vjekoslav Kovač (autor)

Poveznice na cjeloviti tekst rada:

doi arxiv.org msp.org

Citiraj ovu publikaciju:

Durcik, Polona; Kovač, Vjekoslav
A Szemeredi-type theorem for subsets of the unit cube // Analysis & PDE, 15 (2022), 2; 507-549 doi:10.2140/apde.2022.15.507 (međunarodna recenzija, članak, znanstveni)
Durcik, P. & Kovač, V. (2022) A Szemeredi-type theorem for subsets of the unit cube. Analysis & PDE, 15 (2), 507-549 doi:10.2140/apde.2022.15.507.
@article{article, author = {Durcik, Polona and Kova\v{c}, Vjekoslav}, year = {2022}, pages = {507-549}, DOI = {10.2140/apde.2022.15.507}, keywords = {Euclidean Ramsey theory, arithmetic progression, density theorem, multilinear estimate, singular integral, oscillatory integral}, journal = {Analysis and PDE}, doi = {10.2140/apde.2022.15.507}, volume = {15}, number = {2}, issn = {1948-206X}, title = {A Szemeredi-type theorem for subsets of the unit cube}, keyword = {Euclidean Ramsey theory, arithmetic progression, density theorem, multilinear estimate, singular integral, oscillatory integral} }
@article{article, author = {Durcik, Polona and Kova\v{c}, Vjekoslav}, year = {2022}, pages = {507-549}, DOI = {10.2140/apde.2022.15.507}, keywords = {Euclidean Ramsey theory, arithmetic progression, density theorem, multilinear estimate, singular integral, oscillatory integral}, journal = {Analysis and PDE}, doi = {10.2140/apde.2022.15.507}, volume = {15}, number = {2}, issn = {1948-206X}, title = {A Szemeredi-type theorem for subsets of the unit cube}, keyword = {Euclidean Ramsey theory, arithmetic progression, density theorem, multilinear estimate, singular integral, oscillatory integral} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font