Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1094727

Cavitation Model Calibration Using Machine Learning Assisted Workflow


Sikirica, Ante; Čarija, Zoran; Lučin, Ivana; Grbčić, Luka; Kranjčević, Lado
Cavitation Model Calibration Using Machine Learning Assisted Workflow // Mathematics, 8 (2020), 12; 2107, 15 doi:10.3390/math8122107 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1094727 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Cavitation Model Calibration Using Machine Learning Assisted Workflow

Autori
Sikirica, Ante ; Čarija, Zoran ; Lučin, Ivana ; Grbčić, Luka ; Kranjčević, Lado

Izvornik
Mathematics (2227-7390) 8 (2020), 12; 2107, 15

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
cavitation modeling ; Kunz model ; marine propeller ; random forest

Sažetak
Conventional cavitation assessment methodology in industrial and scientific applications generally depends on cavitation models utilizing homogeneous mixture assumption. These models have been extensively assessed, modified and expanded to account for deficiencies of their predecessors. Unfortunately, none of the proposed models can be classified as the universal solution for all engineering applications, with usage mainly directed by experience or general availability of the models. In this study we propose a workflow through which the empirical constants governing the phase change of the Kunz mixture cavitation model can be calibrated for a given application or a series of problems, with machine learning as a tool for parameter estimation. The proposed approach was validated on a three-dimensional propeller test case with results in excellent agreement for the case in question. Results for thrust and torque were within 2% with cavity extents differing by up to 20%. This is a significant improvement when compared to previously proposed parameters. Despite the lack of generalization due to the limited nature of the dataset on which the model was trained, the proposed parameters entail acceptable results for similar cases as well. The overall methodology is applicable to other problems as well and should lead to more accurate cavitation predictions.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Strojarstvo, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište u Rijeci

Profili:

Avatar Url Zoran Čarija (autor)

Avatar Url Lado Kranjčević (autor)

Avatar Url Ivana Lučin (autor)

Avatar Url Luka Grbčić (autor)

Avatar Url Ante Sikirica (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Sikirica, Ante; Čarija, Zoran; Lučin, Ivana; Grbčić, Luka; Kranjčević, Lado
Cavitation Model Calibration Using Machine Learning Assisted Workflow // Mathematics, 8 (2020), 12; 2107, 15 doi:10.3390/math8122107 (međunarodna recenzija, članak, znanstveni)
Sikirica, A., Čarija, Z., Lučin, I., Grbčić, L. & Kranjčević, L. (2020) Cavitation Model Calibration Using Machine Learning Assisted Workflow. Mathematics, 8 (12), 2107, 15 doi:10.3390/math8122107.
@article{article, author = {Sikirica, Ante and \v{C}arija, Zoran and Lu\v{c}in, Ivana and Grb\v{c}i\'{c}, Luka and Kranj\v{c}evi\'{c}, Lado}, year = {2020}, pages = {15}, DOI = {10.3390/math8122107}, chapter = {2107}, keywords = {cavitation modeling, Kunz model, marine propeller, random forest}, journal = {Mathematics}, doi = {10.3390/math8122107}, volume = {8}, number = {12}, issn = {2227-7390}, title = {Cavitation Model Calibration Using Machine Learning Assisted Workflow}, keyword = {cavitation modeling, Kunz model, marine propeller, random forest}, chapternumber = {2107} }
@article{article, author = {Sikirica, Ante and \v{C}arija, Zoran and Lu\v{c}in, Ivana and Grb\v{c}i\'{c}, Luka and Kranj\v{c}evi\'{c}, Lado}, year = {2020}, pages = {15}, DOI = {10.3390/math8122107}, chapter = {2107}, keywords = {cavitation modeling, Kunz model, marine propeller, random forest}, journal = {Mathematics}, doi = {10.3390/math8122107}, volume = {8}, number = {12}, issn = {2227-7390}, title = {Cavitation Model Calibration Using Machine Learning Assisted Workflow}, keyword = {cavitation modeling, Kunz model, marine propeller, random forest}, chapternumber = {2107} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font