Pregled bibliografske jedinice broj: 1094638
Statistical Compressive Sensing of Analog Signals in B-Spline Function Spaces
Statistical Compressive Sensing of Analog Signals in B-Spline Function Spaces // Abstract Book of the 5th International Workshop on Data Science (IWDS 2020) / Lončarić, Sven ; Šmuc, Tomislav (ur.).
Zagreb, 2020. str. 28-31 (poster, međunarodna recenzija, prošireni sažetak, znanstveni)
CROSBI ID: 1094638 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Statistical Compressive Sensing of Analog Signals in B-Spline Function Spaces
(Statistical Compressive Sensing of Analog Signals
in B-Spline Function Spaces)
Autori
Vlašić, Tin ; Seršić, Damir
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, prošireni sažetak, znanstveni
Izvornik
Abstract Book of the 5th International Workshop on Data Science (IWDS 2020)
/ Lončarić, Sven ; Šmuc, Tomislav - Zagreb, 2020, 28-31
Skup
5th Int'l Workshop on Data Science (IWDS)
Mjesto i datum
Zagreb, Hrvatska, 24.11.2020
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
B-splines ; inverse problems ; sampling ; sparsity
Sažetak
In this paper, we assume that the observed signal lies in a B-spline function space. B-splines, which belong to the class of functions that generate shift-invariant (SI) subspaces, fit into the compressive sensing framework and provide sparse solutions for various real-world signals. Thus, we propose signal acquisition with the system for sub-Nyquist sampling of sparse signals in SI spaces. Additionally, we assume that SI samples obtained by the proposed system follow a Gaussian distribution, so that we can use the statistical compressive sensing measurement and reconstruction strategy. The proposed setting allows for sampling of sparse signals with a much lower sampling rate in contrast to the high- rate sampling in the standard SI setting ; in addition with efficient linear reconstruction which extremely reduces the computational complexity of signal recovery.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-6703 - Renesansa teorije uzorkovanja (SamplingRenaissance) (Seršić, Damir, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb