Pregled bibliografske jedinice broj: 1094355
Machine learning methods for toxic comment classification: a systematic review
Machine learning methods for toxic comment classification: a systematic review // Acta Universitatis Sapientiae Informatica, 12 (2020), 2; 205-216 doi:10.2478/ausi-2020-0012 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1094355 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Machine learning methods for toxic comment classification: a systematic review
Autori
Andročec, Darko
Izvornik
Acta Universitatis Sapientiae Informatica (1844-6086) 12
(2020), 2;
205-216
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
machine learning ; toxic comment ; deep learning ; systematic review
Sažetak
Nowadays users leave numerous comments on different social networks, news portals, and forums. Some of the comments are toxic or abusive. Due to numbers of comments, it is unfeasible to manually moderate them, so most of the systems use some kind of automatic discovery of toxicity using machine learning models. In this work, we performed a systematic review of the state-of-the-art in toxic comment classification using machine learning methods. We extracted data from 31 selected primary relevant studies. First, we have investigated when and where the papers were published and their maturity level. In our analysis of every primary study we investigated: data set used, evaluation metric, used machine learning methods, classes of toxicity, and comment language. We finish our work with comprehensive list of gaps in current research and suggestions for future research themes related to online toxic comment classification problem.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet organizacije i informatike, Varaždin
Profili:
Darko Andročec
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)