Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1094326

Efficient semantic segmentation with pyramidal fusion


Oršić, Marin; Šegvić, Siniša
Efficient semantic segmentation with pyramidal fusion // Pattern recognition, 110 (2021), 107611, 13 doi:10.1016/j.patcog.2020.107611 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1094326 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Efficient semantic segmentation with pyramidal fusion

Autori
Oršić, Marin ; Šegvić, Siniša

Izvornik
Pattern recognition (0031-3203) 110 (2021); 107611, 13

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Semantic segmentation Real-time inference Shared resolution pyramid Computer vision Deep learning

Sažetak
Emergence of large datasets and resilience of convolutional models have enabled successful training of very large semantic segmentation models. However, high capacity implies high computational complexity and therefore hinders real-time operation. We therefore study compact architectures which aim at high accuracy in spite of modest capacity. We propose a novel semantic segmentation approach based on shared pyramidal representation and fusion of heterogeneous features along the upsampling path. The proposed pyramidal fusion approach is especially effective for dense inference in images with large scale variance due to strong regularization effects induced by feature sharing across the resolution pyramid. Interpretation of the decision process suggests that our approach succeeds by acting as a large ensemble of relatively simple models, as well as due to large receptive range and strong gradient flow towards early layers. Our best model achieves 76.4% mIoU on Cityscapes test and runs in real time on low-power embedded devices.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Marin Oršić (autor)

Avatar Url Siniša Šegvić (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Oršić, Marin; Šegvić, Siniša
Efficient semantic segmentation with pyramidal fusion // Pattern recognition, 110 (2021), 107611, 13 doi:10.1016/j.patcog.2020.107611 (međunarodna recenzija, članak, znanstveni)
Oršić, M. & Šegvić, S. (2021) Efficient semantic segmentation with pyramidal fusion. Pattern recognition, 110, 107611, 13 doi:10.1016/j.patcog.2020.107611.
@article{article, author = {Or\v{s}i\'{c}, Marin and \v{S}egvi\'{c}, Sini\v{s}a}, year = {2021}, pages = {13}, DOI = {10.1016/j.patcog.2020.107611}, chapter = {107611}, keywords = {Semantic segmentation Real-time inference Shared resolution pyramid Computer vision Deep learning}, journal = {Pattern recognition}, doi = {10.1016/j.patcog.2020.107611}, volume = {110}, issn = {0031-3203}, title = {Efficient semantic segmentation with pyramidal fusion}, keyword = {Semantic segmentation Real-time inference Shared resolution pyramid Computer vision Deep learning}, chapternumber = {107611} }
@article{article, author = {Or\v{s}i\'{c}, Marin and \v{S}egvi\'{c}, Sini\v{s}a}, year = {2021}, pages = {13}, DOI = {10.1016/j.patcog.2020.107611}, chapter = {107611}, keywords = {Semantic segmentation Real-time inference Shared resolution pyramid Computer vision Deep learning}, journal = {Pattern recognition}, doi = {10.1016/j.patcog.2020.107611}, volume = {110}, issn = {0031-3203}, title = {Efficient semantic segmentation with pyramidal fusion}, keyword = {Semantic segmentation Real-time inference Shared resolution pyramid Computer vision Deep learning}, chapternumber = {107611} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font