Pregled bibliografske jedinice broj: 1093412
Highly Efficient Solid‐State Hydrolysis of Waste Polyethylene Terephthalate by Mechanochemical Milling and Vapor‐Assisted Aging
Highly Efficient Solid‐State Hydrolysis of Waste Polyethylene Terephthalate by Mechanochemical Milling and Vapor‐Assisted Aging // ChemSusChem, 14 (2021), 1; 330-338 doi:10.1002/cssc.202002124 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1093412 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Highly Efficient Solid‐State Hydrolysis of Waste Polyethylene
Terephthalate by Mechanochemical Milling and Vapor‐Assisted Aging
Autori
Štrukil, Vjekoslav
Izvornik
ChemSusChem (1864-5631) 14
(2021), 1;
330-338
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
hydrolysis ; mechanochemistry ; polyethylene terephthalate ; solid-state reactions ; vapor-assisted aging
Sažetak
Despite significant methodological and technological advancements in chemical recycling of synthetic polymers, an efficient and quantitative conversion of post‐consumer polyethylene terephthalate (PET) into terephthalic acid (TPA) under ambient conditions of temperature and pressure still remains a challenge. In this respect, the application of mechanochemistry and multiple advantages offered by solid‐state ball milling and vapor‐assisted aging have remained insufficiently explored. To further expand their potential, the implementation of organic solvent‐free milling as a superior methodology for successful alkaline depolymerization of waste PET (e. g., bottles and textile) into TPA monomer in near‐quantitative yields was reported herein. The solid‐state alkaline PET hydrolysis was also shown to proceed in excellent yields under aging conditions in humid environment or in the presence of alcohol vapors. Moreover, the performance of mechanochemical ball milling and aging in the gram‐scale depolymerization of PET into TPA was demonstrated.
Izvorni jezik
Engleski
Znanstvena područja
Kemija
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE