Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1093157

Traffic State Estimation and Anomaly Detection Using Tensor-Based Method


Tišljarić, Leo; Carić, Tonči; Fernandes, Sofia; Gama, João
Traffic State Estimation and Anomaly Detection Using Tensor-Based Method // 5th International Workshop on Data Science (IWDS 2020)
Zagreb, Hrvatska, 2020. str. 1-2 (poster, međunarodna recenzija, prošireni sažetak, ostalo)


CROSBI ID: 1093157 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Traffic State Estimation and Anomaly Detection Using Tensor-Based Method

Autori
Tišljarić, Leo ; Carić, Tonči ; Fernandes, Sofia ; Gama, João

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, prošireni sažetak, ostalo

Skup
5th International Workshop on Data Science (IWDS 2020)

Mjesto i datum
Zagreb, Hrvatska, 24.11.2020

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Road traffic anomaly detection ; Tensor decomposition methods ; Speed probability distribution ; Intelligent transport systems ; Traffic state estimation

Sažetak
The increased development of the urban areas consequently results in a larger number of vehicles on the road network, leading to traffic congestion, especially in the rush hours. Intelligent Transport Systems (ITS) solutions present the applications that can be useful in detecting and dealing with the problems that are related to congestion. This paper presents a method for traffic state estimation and anomaly detection on urban roads using the tensor decomposition method. The method is composed of several steps: (i) computation of the Speed Transition Matrices (STMs) for every observed transition on the observed traffic road network, (ii) dividing the observed area (the city) using the grid, (iii) composing the tensor for every cell in the grid, (iv) tensor decomposition to extract the traffic patterns and its spatial and temporal characteristics, (v) classification of the traffic patterns to estimate the traffic state and (vi) clustering of the characteristic spatiotemporal patterns.

Izvorni jezik
Engleski

Znanstvena područja
Tehnologija prometa i transport, Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)

Ustanove:
Fakultet prometnih znanosti, Zagreb

Profili:

Avatar Url Leo Tišljarić (autor)

Avatar Url Tonči Carić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Tišljarić, Leo; Carić, Tonči; Fernandes, Sofia; Gama, João
Traffic State Estimation and Anomaly Detection Using Tensor-Based Method // 5th International Workshop on Data Science (IWDS 2020)
Zagreb, Hrvatska, 2020. str. 1-2 (poster, međunarodna recenzija, prošireni sažetak, ostalo)
Tišljarić, L., Carić, T., Fernandes, S. & Gama, J. (2020) Traffic State Estimation and Anomaly Detection Using Tensor-Based Method. U: 5th International Workshop on Data Science (IWDS 2020).
@article{article, author = {Ti\v{s}ljari\'{c}, Leo and Cari\'{c}, Ton\v{c}i and Fernandes, Sofia and Gama, Jo\~{a}o}, year = {2020}, pages = {1-2}, keywords = {Road traffic anomaly detection, Tensor decomposition methods, Speed probability distribution, Intelligent transport systems, Traffic state estimation}, title = {Traffic State Estimation and Anomaly Detection Using Tensor-Based Method}, keyword = {Road traffic anomaly detection, Tensor decomposition methods, Speed probability distribution, Intelligent transport systems, Traffic state estimation}, publisherplace = {Zagreb, Hrvatska} }
@article{article, author = {Ti\v{s}ljari\'{c}, Leo and Cari\'{c}, Ton\v{c}i and Fernandes, Sofia and Gama, Jo\~{a}o}, year = {2020}, pages = {1-2}, keywords = {Road traffic anomaly detection, Tensor decomposition methods, Speed probability distribution, Intelligent transport systems, Traffic state estimation}, title = {Traffic State Estimation and Anomaly Detection Using Tensor-Based Method}, keyword = {Road traffic anomaly detection, Tensor decomposition methods, Speed probability distribution, Intelligent transport systems, Traffic state estimation}, publisherplace = {Zagreb, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font