Pregled bibliografske jedinice broj: 1091920
Periodic Triangulations of Zn
Periodic Triangulations of Zn // The Electronic journal of combinatorics, 27 (2020), 1-19 doi:10.37236/8298 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1091920 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Periodic Triangulations of Zn
Autori
Dutour Sikirić, Mathieu ; Garber, Alexey
Izvornik
The Electronic journal of combinatorics (1077-8926) 27
(2020);
1-19
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Polytope ; Triangulations ; Periodic ; Enumeration
Sažetak
We consider in this work triangulations of Z^n that are periodic along Z^n. They generalize the triangulations obtained from Delaunay tessellations of lattices. Other important property is the regularity and central-symmetry property of triangulations. Full enumeration for dimension at most 4 is obtained. In dimension 5 several new phenomena happen: there are centrally-symmetric triangulations that are not Delaunay, there are non-regular triangulations (it could happen in dimension 4) and a given simplex has a priori an infinity of possible adjacent simplices. We found 950 periodic triangulations in dimension 5 but finiteness is unknown.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet