Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1090219

Mild Cognitive Impairment Detection Using Association Rules Mining


Babič, František; Pusztová, Ľudmila; Majnarić, Ljiljana
Mild Cognitive Impairment Detection Using Association Rules Mining // Acta Informatica Pragensia, 9 (2020), 2; 92, 15 doi:10.18267/j.aip.135 (međunarodna recenzija, članak, ostalo)


CROSBI ID: 1090219 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Mild Cognitive Impairment Detection Using Association Rules Mining

Autori
Babič, František ; Pusztová, Ľudmila ; Majnarić, Ljiljana

Izvornik
Acta Informatica Pragensia (1805-4951) 9 (2020), 2; 92, 15

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, ostalo

Ključne riječi
Association Rules, Patterns, Mild Cognitive Impairment, Interpretability

Sažetak
A single Mild cognitive impairment (MCI) is a transitional state between normal cognition and dementia. The typical diagnostic procedure relies on neuropsychological testing, which is insufficiently accurate and does not provide information on patients’ clinical profiles. The objective of this paper is to improve the recognition of elderly primary care patients with MCI by using an approach typically applied in the market basket analysis – association rules mining. In our case, the association rules represent various combinations of the clinical features or patterns associated with MCI. The analytical process was performed in line with the CRISP-DM, the methodology for data mining projects widely used in various research or industry domains. In the data preparation phase, we applied several approaches to improve the data quality like the k-Nearest Neighbour, correlation analysis, Chi Merge and K-Means algorithms. The analytical solution´s success was confirmed not only by the novelty and correctness of new knowledge, but also by the form of visualization that is easily understandable for domain experts. This iterative approach provides a set of rules (patterns) that meet minimum support and reliability. The extracted rules may help medical professionals recognize clinical patterns ; however, the final decision depends on the expert. A medical expert has a crucial role in this process by enabling the link between the information contained in the rules and the evidence-based knowledge. It markedly contributes to the interpretability of the results.

Izvorni jezik
Engleski



POVEZANOST RADA


Ustanove:
Medicinski fakultet, Osijek,
Fakultet za dentalnu medicinu i zdravstvo, Osijek

Profili:

Avatar Url Ljiljana Majnarić (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Babič, František; Pusztová, Ľudmila; Majnarić, Ljiljana
Mild Cognitive Impairment Detection Using Association Rules Mining // Acta Informatica Pragensia, 9 (2020), 2; 92, 15 doi:10.18267/j.aip.135 (međunarodna recenzija, članak, ostalo)
Babič, F., Pusztová, Ľ. & Majnarić, L. (2020) Mild Cognitive Impairment Detection Using Association Rules Mining. Acta Informatica Pragensia, 9 (2), 92, 15 doi:10.18267/j.aip.135.
@article{article, author = {Babi\v{c}, Franti\v{s}ek and Pusztov\'{a}, \v{L}udmila and Majnari\'{c}, Ljiljana}, year = {2020}, pages = {15}, DOI = {10.18267/j.aip.135}, chapter = {92}, keywords = {Association Rules, Patterns, Mild Cognitive Impairment, Interpretability}, journal = {Acta Informatica Pragensia}, doi = {10.18267/j.aip.135}, volume = {9}, number = {2}, issn = {1805-4951}, title = {Mild Cognitive Impairment Detection Using Association Rules Mining}, keyword = {Association Rules, Patterns, Mild Cognitive Impairment, Interpretability}, chapternumber = {92} }
@article{article, author = {Babi\v{c}, Franti\v{s}ek and Pusztov\'{a}, \v{L}udmila and Majnari\'{c}, Ljiljana}, year = {2020}, pages = {15}, DOI = {10.18267/j.aip.135}, chapter = {92}, keywords = {Association Rules, Patterns, Mild Cognitive Impairment, Interpretability}, journal = {Acta Informatica Pragensia}, doi = {10.18267/j.aip.135}, volume = {9}, number = {2}, issn = {1805-4951}, title = {Mild Cognitive Impairment Detection Using Association Rules Mining}, keyword = {Association Rules, Patterns, Mild Cognitive Impairment, Interpretability}, chapternumber = {92} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font