Pregled bibliografske jedinice broj: 1089410
Primjena konvolucijske neuralne mreže u brojanju i lokalizaciji proteina fotografiranih super-rezolucijskom mikroskopijom
Primjena konvolucijske neuralne mreže u brojanju i lokalizaciji proteina fotografiranih super-rezolucijskom mikroskopijom, 2020., diplomski rad, diplomski, Prirodoslovno-matematički fakultet, Zagreb
CROSBI ID: 1089410 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Primjena konvolucijske neuralne mreže u brojanju i lokalizaciji proteina fotografiranih super-rezolucijskom mikroskopijom
(Application of convolutional neural network for protein counting and localization photographed by super-resolution microscopy)
Autori
Meić, Ivan
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski
Fakultet
Prirodoslovno-matematički fakultet
Mjesto
Zagreb
Datum
28.02
Godina
2020
Stranica
39
Mentor
Manzo, Carlo ; Franjević, Damjan
Ključne riječi
super-rezolucijska mikroskopija, CNN, strojno učenje, brojanje i lokalizacija proteina
(super-resolution microscopy, CNN, machine learning, protein counting and localization)
Sažetak
In recent years novel microscopy techniques have led to the development of super-resolution imaging with increased resolution compared to conventional microscope techniques. A branch of super-resolution microscopy, based on single-molecule localization that includes techniques such as Photoactivated localization microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM), enables researchers to study cellular processes with increased resolution. Single-molecule localization microscopy relies on collecting a set of images where only a subset of optically resolvable fluorophores is emitting light. The analysis of these images allows for reconstruction of high-quality super-resolution images. This graduation thesis proposes a further step in super-resolution image analysis, based on the analysis of individual protein localization. It proposes to use the multiple counts produced by a single protein to predict its position. Position is predicted beyond overcounting artifact through a neural network, in order to predict the protein number and position. Counting proteins from super-resolution image is a problem because of fluorophore overcounting. Unlike previous papers trying to solve this problem, this graduation thesis does not use any modelling and relies only on neural network's ability to learn from data. This approach provides researchers with a fast performing algorithm that requires minimal knowledge about neural networks and image analysis. The main object of this graduation thesis is to create and measure how well the state of the art image processing neural network can localize and count proteins.
Izvorni jezik
Engleski
Znanstvena područja
Biologija
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Damjan Franjević
(mentor)