Pregled bibliografske jedinice broj: 1089190
Topic Modelling in Social Sciences: Case Study of Web of Science
Topic Modelling in Social Sciences: Case Study of Web of Science // Proceeding of 31st Central European Conference on Information and Intelligent Systems / Strahonja, Vjeran ; Hertweck, Dieter ; Kirinić, Valentina (ur.).
Varaždin: Fakultet organizacije i informatike Sveučilišta u Zagrebu, 2020. str. 1-8 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1089190 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Topic Modelling in Social Sciences: Case Study of
Web of Science
Autori
Buhin Pandur, Maja ; Dobša, Jasminka ; Kronegger, Luka
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceeding of 31st Central European Conference on Information and Intelligent Systems
/ Strahonja, Vjeran ; Hertweck, Dieter ; Kirinić, Valentina - Varaždin : Fakultet organizacije i informatike Sveučilišta u Zagrebu, 2020, 1-8
Skup
31st Central European Conference on Information and Intelligent Systems (CECIIS 2020)
Mjesto i datum
Varaždin, Hrvatska, 07.10.2020. - 09.10.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
topic modelling, Latent Dirichlet Allocation, Structural Topic Model, social sciences
Sažetak
Topic modelling is one of the most popular topics investigated in the area of Natural Language Processing. One of the techniques used for topics modelling is Latent Dirichlet Allocation (LDA). It is an unsupervised machine learning technique which creates topics using a collection of documents based on words or n-grams with similar meaning. In this paper, we applied a Structural Topic Model with LDA to extract topics from scientific papers in Social Science. A structural topic modelling of 3663 articles from Web of Science Core Collection from 1999 to 2019 was conducted. The obtained results indicate that an optimal number of topics coincides with the existing number of research areas defined in Social Science or with its integer multiple. This opens an area for research into the comparison between the existing taxonomy and the taxonomy proposed by the LDA model and for the future identification of interdisciplinarity.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet organizacije i informatike, Varaždin