Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1088468

Automatic classification of nuclear physics data via a Constrained Evolutionary Clustering approach


Dell’Aquila, Daniele; Russo, Marco
Automatic classification of nuclear physics data via a Constrained Evolutionary Clustering approach // Computer physics communications, 259 (2021), 107667-107667 doi:10.1016/j.cpc.2020.107667 (međunarodna recenzija, članak, ostalo)


CROSBI ID: 1088468 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Automatic classification of nuclear physics data via a Constrained Evolutionary Clustering approach

Autori
Dell’Aquila, Daniele ; Russo, Marco

Izvornik
Computer physics communications (0010-4655) 259 (2021); 107667-107667

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, ostalo

Ključne riječi
Artificial intelligence in nuclear data ; classification of data in nucleus-nucleus collisions ; genetic programming ; artificial neural networks

Sažetak
This paper presents an automatic method for data classification in nuclear physics experiments based on evolutionary computing and vector quantization. The major novelties of our approach are the fully automatic mechanism and the use of analytical models to provide physics constraints, yielding to a fast and physically reliable classification with nearly-zero human supervision. Our method is successfully validated using experimental data produced by stacks of semiconducting detectors. The resulting classification is highly satisfactory for all explored cases and is particularly robust to noise. The algorithm is suitable to be integrated in the online and offline analysis software of existing large complexity detection arrays for the study of nucleus–nucleus collisions at low and intermediate energies.

Izvorni jezik
Engleski

Znanstvena područja
Fizika



POVEZANOST RADA


Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Daniele Dell'Aquila (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com doi.org

Citiraj ovu publikaciju:

Dell’Aquila, Daniele; Russo, Marco
Automatic classification of nuclear physics data via a Constrained Evolutionary Clustering approach // Computer physics communications, 259 (2021), 107667-107667 doi:10.1016/j.cpc.2020.107667 (međunarodna recenzija, članak, ostalo)
Dell’Aquila, D. & Russo, M. (2021) Automatic classification of nuclear physics data via a Constrained Evolutionary Clustering approach. Computer physics communications, 259, 107667-107667 doi:10.1016/j.cpc.2020.107667.
@article{article, author = {Dell’Aquila, Daniele and Russo, Marco}, year = {2021}, pages = {107667-107667}, DOI = {10.1016/j.cpc.2020.107667}, keywords = {Artificial intelligence in nuclear data, classification of data in nucleus-nucleus collisions, genetic programming, artificial neural networks}, journal = {Computer physics communications}, doi = {10.1016/j.cpc.2020.107667}, volume = {259}, issn = {0010-4655}, title = {Automatic classification of nuclear physics data via a Constrained Evolutionary Clustering approach}, keyword = {Artificial intelligence in nuclear data, classification of data in nucleus-nucleus collisions, genetic programming, artificial neural networks} }
@article{article, author = {Dell’Aquila, Daniele and Russo, Marco}, year = {2021}, pages = {107667-107667}, DOI = {10.1016/j.cpc.2020.107667}, keywords = {Artificial intelligence in nuclear data, classification of data in nucleus-nucleus collisions, genetic programming, artificial neural networks}, journal = {Computer physics communications}, doi = {10.1016/j.cpc.2020.107667}, volume = {259}, issn = {0010-4655}, title = {Automatic classification of nuclear physics data via a Constrained Evolutionary Clustering approach}, keyword = {Artificial intelligence in nuclear data, classification of data in nucleus-nucleus collisions, genetic programming, artificial neural networks} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font