Pregled bibliografske jedinice broj: 1088460
Survey of Neural Text Representation Models
Survey of Neural Text Representation Models // Information, 11 (2020), 11; 511, 32 doi:10.3390/info11110511 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1088460 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Survey of Neural Text Representation Models
Autori
Babić, Karlo ; Martinčić-Ipšić, Sanda ; Meštrović, Ana
Izvornik
Information (2078-2489) 11
(2020), 11;
511, 32
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
deep learning ; embedding ; neural language model ; neural networks ; NLP ; text representation
Sažetak
In natural language processing, text needs to be transformed into a machine-readable representation before any processing. The quality of further natural language processing tasks greatly depends on the quality of those representations. In this survey, we systematize and analyze 50 neural models from the last decade. The models described are grouped by the architecture of neural networks as shallow, recurrent, recursive, convolutional, and attention models. Furthermore, we categorize these models by representation level, input level, model type, and model supervision. We focus on task-independent representation models, discuss their advantages and drawbacks, and subsequently identify the promising directions for future neural text representation models. We describe the evaluation datasets and tasks used in the papers that introduced the models and compare the models based on relevant evaluations. The quality of a representation model can be evaluated as its capability to generalize to multiple unrelated tasks. Benchmark standardization is visible amongst recent models and the number of different tasks models are evaluated on is increasing.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus