Pregled bibliografske jedinice broj: 1087671
Lie Group Dynamics of Multibody System in Vortical Fluid Flow
Lie Group Dynamics of Multibody System in Vortical Fluid Flow // First International Nonlinear Dynamics Conference (NODYCON 2019) / Lacarbonara, Walter ; Balachandran, Balakumar ; Ma, Jun ; Tenreiro Machado, J. A. ; Stepan, Gabor (ur.).
Rim, Italija: Springer, 2020. str. 409-417 doi:10.1007/978-3-030-34713-0_41 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1087671 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Lie Group Dynamics of Multibody System in Vortical
Fluid Flow
Autori
Terze, Zdravko ; Pandža, Viktor ; Zlatar, Dario
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Skup
First International Nonlinear Dynamics Conference (NODYCON 2019)
Mjesto i datum
Rim, Italija, 17.02.2019. - 20.02.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Lie groups ; Multibody dynamics ; Fluid-structure interaction
Sažetak
This paper describes a computationally efficient method for simulating dynamics of the coupled multibody-fluid system that utilizes symplectic and LiePoisson reductions in order to formulate fully coupled dynamical model of the multi- physical system by using solid variables only. The multibody system (MBS) dynamics is formulated in Lie group setting and integrated with the pertinent Lie group integration method that operates in MBS state space. The effects of fluid flow on MBS dynamics are accounted for by the added masses to the submerged bodies, calculated by boundary element method. The case study of coupled dynamics of three rigid ellipsoid (blunt) bodies in fluid flow without circulation is presented. In order to take into account additional viscous effects and include fluid vorticity and circulation in the system dynamics (when motion of the kinematical chain with sharp edges is considered), vortex shedding mechanism is incorporated in the overall model by numerically enforcing Kutta condition.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo, Zrakoplovstvo, raketna i svemirska tehnika
POVEZANOST RADA
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb