Pregled bibliografske jedinice broj: 1087014
Physicochemical Characterisation of KEIF—The Intrinsically Disordered N-Terminal Region of Magnesium Transporter A
Physicochemical Characterisation of KEIF—The Intrinsically Disordered N-Terminal Region of Magnesium Transporter A // Biomolecules, 10 (2020), 4; 623, 22 doi:10.3390/biom10040623 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1087014 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Physicochemical Characterisation of KEIF—The Intrinsically Disordered N-Terminal Region of Magnesium Transporter A
Autori
Jephthah, Stéphanie ; Månsson, Linda K. ; Belić, Domagoj ; Morth, Jens Preben ; Skepö, Marie
Izvornik
Biomolecules (2218-273X) 10
(2020), 4;
623, 22
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
membrane proteins ; intrinsically disordered proteins ; circular dichroism spectroscopy ; small-angle X-ray scattering ; cryogenic transmission electron microscopy ; molecular-dynamics simulations ; protein–vesicle interactions ; magnesium transporter ; secondary structure
Sažetak
Magnesium transporter A (MgtA) is an active transporter responsible for importing magnesium ions into the cytoplasm of prokaryotic cells. This study focuses on the peptide corresponding to the intrinsically disordered N-terminal region of MgtA, referred to as KEIF. Primary-structure and bioinformatic analyses were performed, followed by studies of the undisturbed single chain using a combination of techniques including small-angle X-ray scattering, circular dichroism spectroscopy, and atomistic molecular-dynamics simulations. Moreover, interactions with large unilamellar vesicles were investigated by using dynamic light scattering, laser Doppler velocimetry, cryogenic transmission electron microscopy, and circular dichroism spectroscopy. KEIF was confirmed to be intrinsically disordered in aqueous solution, although extended and containing little β-structure and possibly PPII structure. An increase of helical content was observed in organic solvent, and a similar effect was also seen in aqueous solution containing anionic vesicles. Interactions of cationic KEIF with anionic vesicles led to the hypothesis that KEIF adsorbs to the vesicle surface through electrostatic and entropic driving forces. Considering this, there is a possibility that the biological role of KEIF is to anchor MgtA in the cell membrane, although further investigation is needed to confirm this hypothesis. View Full-Text
Izvorni jezik
Engleski
Znanstvena područja
Fizika, Kemija, Biologija, Interdisciplinarne prirodne znanosti, Kemijsko inženjerstvo
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Emerging Sources Citation Index (ESCI)
- Scopus
- MEDLINE