Pregled bibliografske jedinice broj: 1086397
Bounds for the p-angular distance and characterizations of inner product spaces
Bounds for the p-angular distance and characterizations of inner product spaces // Mediterranean journal of mathematics, 18 (2021), 4; 140, 22 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1086397 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Bounds for the p-angular distance and characterizations of inner product spaces
Autori
Krnić, Mario ; Minculete, Nicusor
Izvornik
Mediterranean journal of mathematics (1660-5446) 18
(2021), 4;
140, 22
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
inner product space, normed space, $p$-angular distance, characterization of inner product space, the Hile inequality
Sažetak
Based on a suitable improvement of a triangle inequality, we derive new mutual bounds for $p$-angular distance $\alpha_p[x, y]=\big\Vert \Vert x\Vert^{; ; p-1}; ; x- \Vert y\Vert^{; ; p-1}; ; y\big\Vert$, in a normed linear space $X$. We show that our estimates are more accurate than the previously known upper bounds established by Dragomir, Hile and Maligranda. Next, we give several characterizations of inner product spaces with regard to the $p$-angular distance. In particular, we prove that if $|p|\geq |q|$, $p\neq q$, then $X$ is an inner product space if and only if for every $x, y\in X\setminus \{; ; 0\}; ; $, $${; ; \alpha_p[x, y]}; ; \geq \frac{; ; {; ; \|x\|^{; ; p}; ; +\|y\|^{; ; p}; ; }; ; }; ; {; ; \|x\|^{; ; q}; ; +\|y\|^{; ; q}; ; }; ; \alpha_q[x, y].
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Mario Krnić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus