Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1086237

On D(−1)-triples {;1,4p^2+1,1−p}; in the ring Z[√p] with a prime p


Filipin, Alan; Jukić Bokun, Mirela; Soldo, Ivan
On D(−1)-triples {;1,4p^2+1,1−p}; in the ring Z[√p] with a prime p // Periodica mathematica Hungarica, 85 (2022), 2; 292-302 doi:10.1007/s10998-021-00435-5 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1086237 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
On D(−1)-triples {;1,4p^2+1,1−p}; in the ring Z[√p] with a prime p
(On D(−1)-triples {;1,4p^2+1,1−p}; in the ring Z[√p] with a prime p)

Autori
Filipin, Alan ; Jukić Bokun, Mirela ; Soldo, Ivan

Izvornik
Periodica mathematica Hungarica (0031-5303) 85 (2022), 2; 292-302

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Diophantine tuples ; quadratic field ; simultaneous pellian equations, linear form in logarithms
(Diophantine tuples, quadratic field, simultaneous pellian equations, linear form in logarithms)

Sažetak
Let p be a prime such that \(4p^2+1\) is also a prime. In this paper, we prove that the \(D(-1)\)-set \(\ {;1, 4p^2+1, 1-p\};\) cannot be extended with the forth element d such that the product of any two distinct elements of the new set decreased by 1 is a square in the ring \({;{;\mathbb {;Z};};};[\sqrt{;-p};]\).

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2018-01-1313 - Diofantska geometrija i primjene (DIOPHANT) (Kazalicki, Matija, HRZZ - 2018-01) ( CroRIS)

Ustanove:
Građevinski fakultet, Zagreb,
Sveučilište u Osijeku, Odjel za matematiku

Profili:

Avatar Url Mirela Jukić Bokun (autor)

Avatar Url Alan Filipin (autor)

Avatar Url Ivan Soldo (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Filipin, Alan; Jukić Bokun, Mirela; Soldo, Ivan
On D(−1)-triples {;1,4p^2+1,1−p}; in the ring Z[√p] with a prime p // Periodica mathematica Hungarica, 85 (2022), 2; 292-302 doi:10.1007/s10998-021-00435-5 (međunarodna recenzija, članak, znanstveni)
Filipin, A., Jukić Bokun, M. & Soldo, I. (2022) On D(−1)-triples {;1,4p^2+1,1−p}; in the ring Z[√p] with a prime p. Periodica mathematica Hungarica, 85 (2), 292-302 doi:10.1007/s10998-021-00435-5.
@article{article, author = {Filipin, Alan and Juki\'{c} Bokun, Mirela and Soldo, Ivan}, year = {2022}, pages = {292-302}, DOI = {10.1007/s10998-021-00435-5}, keywords = {Diophantine tuples, quadratic field, simultaneous pellian equations, linear form in logarithms}, journal = {Periodica mathematica Hungarica}, doi = {10.1007/s10998-021-00435-5}, volume = {85}, number = {2}, issn = {0031-5303}, title = {On D(−1)-triples {;1,4p\^{}2+1,1−p}; in the ring Z[√p] with a prime p}, keyword = {Diophantine tuples, quadratic field, simultaneous pellian equations, linear form in logarithms} }
@article{article, author = {Filipin, Alan and Juki\'{c} Bokun, Mirela and Soldo, Ivan}, year = {2022}, pages = {292-302}, DOI = {10.1007/s10998-021-00435-5}, keywords = {Diophantine tuples, quadratic field, simultaneous pellian equations, linear form in logarithms}, journal = {Periodica mathematica Hungarica}, doi = {10.1007/s10998-021-00435-5}, volume = {85}, number = {2}, issn = {0031-5303}, title = {On D(−1)-triples {;1,4p\^{}2+1,1−p}; in the ring Z[√p] with a prime p}, keyword = {Diophantine tuples, quadratic field, simultaneous pellian equations, linear form in logarithms} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font