Pregled bibliografske jedinice broj: 1085241
Traffic Flow Forecasting at Micro-Locations in Urban Network using Bluetooth Detector
Traffic Flow Forecasting at Micro-Locations in Urban Network using Bluetooth Detector // PROCEEDINGS ELMAR-2020 / Muštra, Mario ; Vuković, Josip ; Zovko-Cihlar, Branka (ur.).
Zadar: Hrvatsko društvo Elektronika u pomorstvu (ELMAR), 2020. str. 57-60 doi:10.1109/ELMAR49956.2020.9219023 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1085241 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Traffic Flow Forecasting at Micro-Locations in
Urban Network using Bluetooth Detector
Autori
Cvetek, Dominik ; Muštra, Mario ; Jelušić, Niko ; Abramović, Borna
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
PROCEEDINGS ELMAR-2020
/ Muštra, Mario ; Vuković, Josip ; Zovko-Cihlar, Branka - Zadar : Hrvatsko društvo Elektronika u pomorstvu (ELMAR), 2020, 57-60
ISBN
978-1-7281-5972-0
Skup
62nd International Symposium ELMAR-2020
Mjesto i datum
Zadar, Hrvatska, 14.09.2020. - 15.09.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Traffic Flow , Data Acquisition , Bluetooth , Traffic Prediction
Sažetak
Predicting the urban traffic flow is of great importance for urban planners to be used in long- term prediction or in Intelligent Transport Systems (ITS) for short-term predictions. Traffic prediction is a challenging task because of complex spatial-temporal correlation between links in the road network. It is necessary to collect high-quality and rich-full traffic data for traffic state estimation and traffic prediction tasks. For this purpose, we investigate the ability of Bluetooth (BT) detector as a sensor at a micro-location to deliver additional information about the traffic condition. Furthermore, we used collected data to compare a few common time series methods: Random walk, Exponential smoothing, ARIMA, SARIMA, and Unobserved components. Our goal was to evaluate traffic data collected by a BT detector at a micro-location using time series forecasting methods. We showed that ARIMA model gives the best performance in forecasting a traffic demand. This data-driven approach can be helpful to inform drivers about better routing decisions and provides a guide for strategic traffic planning.
Izvorni jezik
Engleski
Znanstvena područja
Tehnologija prometa i transport, Tekstilna tehnologija
POVEZANOST RADA
Ustanove:
Fakultet prometnih znanosti, Zagreb