Pregled bibliografske jedinice broj: 1085085
Abdominal Aortic Aneurysm Segmentation from CT Images using Modified 3D U-Net with Deep Supervision
Abdominal Aortic Aneurysm Segmentation from CT Images using Modified 3D U-Net with Deep Supervision // 2020 International Symposium ELMAR
Zadar: Institute of Electrical and Electronics Engineers (IEEE), 2020. str. 123-128 doi:10.1109/elmar49956.2020.9219015 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1085085 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Abdominal Aortic Aneurysm Segmentation from CT Images using Modified 3D U-Net with Deep Supervision
Autori
Habijan, Marija ; Galic, Irena ; Leventic, Hrvoje ; Romic, Kresimir ; Babin, Danilo
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2020 International Symposium ELMAR
/ - Zadar : Institute of Electrical and Electronics Engineers (IEEE), 2020, 123-128
ISBN
978-1-7281-5973-7
Skup
62nd International Symposium ELMAR-2020
Mjesto i datum
Zadar, Hrvatska, 14.09.2020. - 15.09.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Abdominal aortic aneurysm, CT, Deep learning, Medical image segmentation, 3D U-Net
Sažetak
An abdominal aortic aneurysm (AAA) is a dangerous cardiovascular disease that can cause serious health complications and death. Methods that can provide automatic and accurate segmentation of the AAA can significantly help in preoperative planning and postoperative follow-ups. Therefore, in this work, we present an automatic method for AAA segmentation from CT images using a modified 3D U-Net network with deep supervision. We compare obtained results for AAA segmentation using original 3D U-Net, and modified 3D U-Net with deep supervision. The trained network is evaluated on 19 volumetric CT images from the publicly available dataset provided by the University Hospitals Leuven, Belgium, using four-fold cross-validation. We obtained DSC of 91.03% using modified 3D U-Net with deep supervision. Additionally, we provide a discussion of the effects of using up-sampling versus deconvolution layers and its influence on the performance of both networks for this specific clinical application.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
UIP-2017-05-4968 - Metode za interpretaciju medicinskih snimki za detaljnu analizu zdravlja srca (IMAGINEHEART) (Galić, Irena, HRZZ - 2017-05) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek