Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1084923

Application of machine learning models in hydrology: case study of river temperature forecasting in the Drava River using coupled wavelet analysis and adaptive neuro-fuzzy inference systems model


Zhu, Senlin; Hadzima-Nyarko, Marijana; Bonacci, Ognjen
Application of machine learning models in hydrology: case study of river temperature forecasting in the Drava River using coupled wavelet analysis and adaptive neuro-fuzzy inference systems model // Basics of Computational Geophysics / Samui, Pijush (ur.).
Kidlington: Elsevier, 2021. str. 399-411 doi:10.1016/B978-0-12-820513-6.00015-1


CROSBI ID: 1084923 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Application of machine learning models in hydrology: case study of river temperature forecasting in the Drava River using coupled wavelet analysis and adaptive neuro-fuzzy inference systems model

Autori
Zhu, Senlin ; Hadzima-Nyarko, Marijana ; Bonacci, Ognjen

Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni

Knjiga
Basics of Computational Geophysics

Urednik/ci
Samui, Pijush

Izdavač
Elsevier

Grad
Kidlington

Godina
2021

Raspon stranica
399-411

ISBN
978-0-12-820513-6

Ključne riječi
Adaptive Neuro-Fuzzy Inference Systems ; ANFIS ; Wavelet Analysis ; WA ; WA-ANFIS ; Mother Wavelets ; River Water Temperature ; Drava River

Sažetak
In this chapter, a hybrid model (WA-ANFIS) that couples wavelet analysis (WA) and adaptive neuro- fuzzy inference systems (ANFIS) is proposed to forecast daily river temperature as a case study. Four mother wavelets, including Daubechies, Symlet, discrete Meyer and Haar, are considered to develop the WA-ANFIS model. The hybrid model is applied to predict daily water temperature on the Drava River in Croatia, Central Europe. Long-term observed daily water temperatures in two river gauges as well as daily air temperatures of two meteorological stations are used. The performance of the WA-ANFIS model is evaluated by comparing the modelling results with those obtained from linear and non-linear regression models as well as the traditional ANFIS model. The results show that the WA-ANFIS models perform well in forecasting river temperature time series, and outperform the linear, non- linear and the traditional ANFIS models. Among the four mother wavelets applied, the Daubechies at level 10 performs the best, slightly better than the discrete Meyer and Symlet, while the Haar mother wavelet has the lowest accuracy. The outcomes of this study have important implications for water temperature forecasting and ecosystem management of rivers.

Izvorni jezik
Engleski

Znanstvena područja
Građevinarstvo



POVEZANOST RADA


Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split,
Građevinski i arhitektonski fakultet Osijek

Profili:

Avatar Url Ognjen Bonacci (autor)

Avatar Url Marijana Hadzima-Nyarko (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Zhu, Senlin; Hadzima-Nyarko, Marijana; Bonacci, Ognjen
Application of machine learning models in hydrology: case study of river temperature forecasting in the Drava River using coupled wavelet analysis and adaptive neuro-fuzzy inference systems model // Basics of Computational Geophysics / Samui, Pijush (ur.).
Kidlington: Elsevier, 2021. str. 399-411 doi:10.1016/B978-0-12-820513-6.00015-1
Zhu, S., Hadzima-Nyarko, M. & Bonacci, O. (2021) Application of machine learning models in hydrology: case study of river temperature forecasting in the Drava River using coupled wavelet analysis and adaptive neuro-fuzzy inference systems model. U: Samui, P. (ur.) Basics of Computational Geophysics. Kidlington, Elsevier, str. 399-411 doi:10.1016/B978-0-12-820513-6.00015-1.
@inbook{inbook, author = {Zhu, Senlin and Hadzima-Nyarko, Marijana and Bonacci, Ognjen}, editor = {Samui, P.}, year = {2021}, pages = {399-411}, DOI = {10.1016/B978-0-12-820513-6.00015-1}, keywords = {Adaptive Neuro-Fuzzy Inference Systems, ANFIS, Wavelet Analysis, WA, WA-ANFIS, Mother Wavelets, River Water Temperature, Drava River}, doi = {10.1016/B978-0-12-820513-6.00015-1}, isbn = {978-0-12-820513-6}, title = {Application of machine learning models in hydrology: case study of river temperature forecasting in the Drava River using coupled wavelet analysis and adaptive neuro-fuzzy inference systems model}, keyword = {Adaptive Neuro-Fuzzy Inference Systems, ANFIS, Wavelet Analysis, WA, WA-ANFIS, Mother Wavelets, River Water Temperature, Drava River}, publisher = {Elsevier}, publisherplace = {Kidlington} }
@inbook{inbook, author = {Zhu, Senlin and Hadzima-Nyarko, Marijana and Bonacci, Ognjen}, editor = {Samui, P.}, year = {2021}, pages = {399-411}, DOI = {10.1016/B978-0-12-820513-6.00015-1}, keywords = {Adaptive Neuro-Fuzzy Inference Systems, ANFIS, Wavelet Analysis, WA, WA-ANFIS, Mother Wavelets, River Water Temperature, Drava River}, doi = {10.1016/B978-0-12-820513-6.00015-1}, isbn = {978-0-12-820513-6}, title = {Application of machine learning models in hydrology: case study of river temperature forecasting in the Drava River using coupled wavelet analysis and adaptive neuro-fuzzy inference systems model}, keyword = {Adaptive Neuro-Fuzzy Inference Systems, ANFIS, Wavelet Analysis, WA, WA-ANFIS, Mother Wavelets, River Water Temperature, Drava River}, publisher = {Elsevier}, publisherplace = {Kidlington} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font