Pregled bibliografske jedinice broj: 1084853
Accounting Journal Reconstruction with Variational Autoencoders and Long Short-term Memory Architecture
Accounting Journal Reconstruction with Variational Autoencoders and Long Short-term Memory Architecture // Ceur Workshop Proceedings SEBD 2020 / Agosti, Maristella ; Atzori, Maurizio ; Ciaccia, Paolo ; Tanca, Letizia (ur.).
Villasimius: University of Padua ; University of Cagliari ; University of BologPolitecnico di Milanona ;, 2020. str. 88-99 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1084853 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Accounting Journal Reconstruction with
Variational Autoencoders and Long Short-term
Memory Architecture
Autori
Župan, Mario ; Letinić, Svjetlana ; Budimir, Verica
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Ceur Workshop Proceedings SEBD 2020
/ Agosti, Maristella ; Atzori, Maurizio ; Ciaccia, Paolo ; Tanca, Letizia - Villasimius : University of Padua ; University of Cagliari ; University of BologPolitecnico di Milanona ;, 2020, 88-99
Skup
28th Italian Symposium on Advanced Database Systems
Mjesto i datum
Villasimius, Italija, 21.06.2020. - 24.06.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
general ledger ; journal entry ; bookkeeping ; accounting ; deep learning ; variational autoencoder ; long short-term memory ; anomaly detection ; accounting control system
Sažetak
Our tries to learn machines how to reconstruct journal entries with the aim of finding anomalies lead us to deep learning (DL) technologies. Nowadays Variational autoencoder and Long short- term memory architectures as well as other deep learning architectures solves wide range of problems, yet they are not enough implemented in a field of accounting information systems (AIS). Inside AIS, accounting data follows accounting logic and makes specific datasets constructed by different type of columns - categorical and continuous variables. Our aim is reconstruction of these variables. Development of the model capable for precise reconstruction is not an easy task. This paper describes our research for anomaly detection model architecture which will be capable to reconstruct dataset with categorical features mixed with continuous monetary value feature. We developed basic models trained on accounting journals from 2007 to 2018 and then tested in the fiscal year 2019. Still, lots of hyperparameters need to be checked if we want to improve accuracy. Deep learning research is an engineering task leaded by experience so there is no linearity in the model improvement. Consequently, this paper is our contribution to collection of experience in developing accurate, useful and intelligent accounting control system.
Izvorni jezik
Engleski
Znanstvena područja
Ekonomija, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Veleučilište u Požegi
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus