Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1084853

Accounting Journal Reconstruction with Variational Autoencoders and Long Short-term Memory Architecture


Župan, Mario; Letinić, Svjetlana; Budimir, Verica
Accounting Journal Reconstruction with Variational Autoencoders and Long Short-term Memory Architecture // Ceur Workshop Proceedings SEBD 2020 / Agosti, Maristella ; Atzori, Maurizio ; Ciaccia, Paolo ; Tanca, Letizia (ur.).
Villasimius: University of Padua ; University of Cagliari ; University of BologPolitecnico di Milanona ;, 2020. str. 88-99 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1084853 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Accounting Journal Reconstruction with Variational Autoencoders and Long Short-term Memory Architecture

Autori
Župan, Mario ; Letinić, Svjetlana ; Budimir, Verica

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Ceur Workshop Proceedings SEBD 2020 / Agosti, Maristella ; Atzori, Maurizio ; Ciaccia, Paolo ; Tanca, Letizia - Villasimius : University of Padua ; University of Cagliari ; University of BologPolitecnico di Milanona ;, 2020, 88-99

Skup
28th Italian Symposium on Advanced Database Systems

Mjesto i datum
Villasimius, Italija, 21.06.2020. - 24.06.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
general ledger ; journal entry ; bookkeeping ; accounting ; deep learning ; variational autoencoder ; long short-term memory ; anomaly detection ; accounting control system

Sažetak
Our tries to learn machines how to reconstruct journal entries with the aim of finding anomalies lead us to deep learning (DL) technologies. Nowadays Variational autoencoder and Long short- term memory architectures as well as other deep learning architectures solves wide range of problems, yet they are not enough implemented in a field of accounting information systems (AIS). Inside AIS, accounting data follows accounting logic and makes specific datasets constructed by different type of columns - categorical and continuous variables. Our aim is reconstruction of these variables. Development of the model capable for precise reconstruction is not an easy task. This paper describes our research for anomaly detection model architecture which will be capable to reconstruct dataset with categorical features mixed with continuous monetary value feature. We developed basic models trained on accounting journals from 2007 to 2018 and then tested in the fiscal year 2019. Still, lots of hyperparameters need to be checked if we want to improve accuracy. Deep learning research is an engineering task leaded by experience so there is no linearity in the model improvement. Consequently, this paper is our contribution to collection of experience in developing accurate, useful and intelligent accounting control system.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Veleučilište u Požegi

Profili:

Avatar Url Svjetlana Letinić (autor)

Avatar Url Verica Budimir (autor)

Avatar Url Mario Župan (autor)

Poveznice na cjeloviti tekst rada:

ceur-ws.org www.scopus.com dblp.org

Citiraj ovu publikaciju:

Župan, Mario; Letinić, Svjetlana; Budimir, Verica
Accounting Journal Reconstruction with Variational Autoencoders and Long Short-term Memory Architecture // Ceur Workshop Proceedings SEBD 2020 / Agosti, Maristella ; Atzori, Maurizio ; Ciaccia, Paolo ; Tanca, Letizia (ur.).
Villasimius: University of Padua ; University of Cagliari ; University of BologPolitecnico di Milanona ;, 2020. str. 88-99 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Župan, M., Letinić, S. & Budimir, V. (2020) Accounting Journal Reconstruction with Variational Autoencoders and Long Short-term Memory Architecture. U: Agosti, M., Atzori, M., Ciaccia, P. & Tanca, L. (ur.)Ceur Workshop Proceedings SEBD 2020.
@article{article, author = {\v{Z}upan, Mario and Letini\'{c}, Svjetlana and Budimir, Verica}, year = {2020}, pages = {88-99}, keywords = {general ledger, journal entry, bookkeeping, accounting, deep learning, variational autoencoder, long short-term memory, anomaly detection, accounting control system}, title = {Accounting Journal Reconstruction with Variational Autoencoders and Long Short-term Memory Architecture}, keyword = {general ledger, journal entry, bookkeeping, accounting, deep learning, variational autoencoder, long short-term memory, anomaly detection, accounting control system}, publisher = {University of Padua ; University of Cagliari ; University of BologPolitecnico di Milanona ;}, publisherplace = {Villasimius, Italija} }
@article{article, author = {\v{Z}upan, Mario and Letini\'{c}, Svjetlana and Budimir, Verica}, year = {2020}, pages = {88-99}, keywords = {general ledger, journal entry, bookkeeping, accounting, deep learning, variational autoencoder, long short-term memory, anomaly detection, accounting control system}, title = {Accounting Journal Reconstruction with Variational Autoencoders and Long Short-term Memory Architecture}, keyword = {general ledger, journal entry, bookkeeping, accounting, deep learning, variational autoencoder, long short-term memory, anomaly detection, accounting control system}, publisher = {University of Padua ; University of Cagliari ; University of BologPolitecnico di Milanona ;}, publisherplace = {Villasimius, Italija} }

Časopis indeksira:


  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font