Pregled bibliografske jedinice broj: 1083998
Traffic State Estimation Using Speed Profiles and Convolutional Neural Networks
Traffic State Estimation Using Speed Profiles and Convolutional Neural Networks // MIPRO 2020 43rd International Convention Proceedings / Skala, Karolj (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2020. str. 2147-2152 doi:10.23919/MIPRO48935.2020.9245177 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), ostalo)
CROSBI ID: 1083998 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Traffic State Estimation Using Speed Profiles and Convolutional Neural Networks
Autori
Tišljarić, Leo ; Carić, Tonči ; Erdelić, Tomislav ; Erdelić, Martina
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), ostalo
Izvornik
MIPRO 2020 43rd International Convention Proceedings
/ Skala, Karolj - Rijeka : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2020, 2147-2152
Skup
43rd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2020)
Mjesto i datum
Opatija, Hrvatska, 28.09.2020. - 02.10.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Traffic state estimation ; Convolutional neural networks ; Speed profiles ; Intelligent transport systems
Sažetak
Determining the traffic state is one of the most attractive problems for experts in the field of Intelligent Transport Systems (ITS). In this paper, a deep learning model for determining the traffic state is presented. The model is based on Convolutional Neural Networks (CNN) and uses weekly speed profiles as input data. The proposed model consists of an input and output layer with addition to four convolutional layers, two pooling layers, and two fully connected layers that are extracting important features and classifying intersections as congested or not congested. We analyze data and predict traffic state for the most relevant road segments in the City of Zagreb which is the capital and largest city in Croatia. Speed profiles from included road segments are represented as one traffic image and used to train CNN. In that way traffic state for all sequentially connected road segments is estimated. The proposed method achieves a classification accuracy of more than 90% on three analyzed types of road topologies. The results show that CNN trained with traffic images can be used as a tool for traffic state estimation.
Izvorni jezik
Engleski
Znanstvena područja
Tehnologija prometa i transport, Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
Ustanove:
Fakultet prometnih znanosti, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Conference Proceedings Citation Index - Science (CPCI-S)
- Scopus