Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1083998

Traffic State Estimation Using Speed Profiles and Convolutional Neural Networks


Tišljarić, Leo; Carić, Tonči; Erdelić, Tomislav; Erdelić, Martina
Traffic State Estimation Using Speed Profiles and Convolutional Neural Networks // MIPRO 2020 43rd International Convention Proceedings / Skala, Karolj (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2020. str. 2147-2152 doi:10.23919/MIPRO48935.2020.9245177 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), ostalo)


CROSBI ID: 1083998 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Traffic State Estimation Using Speed Profiles and Convolutional Neural Networks

Autori
Tišljarić, Leo ; Carić, Tonči ; Erdelić, Tomislav ; Erdelić, Martina

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), ostalo

Izvornik
MIPRO 2020 43rd International Convention Proceedings / Skala, Karolj - Rijeka : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2020, 2147-2152

Skup
43rd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2020)

Mjesto i datum
Opatija, Hrvatska, 28.09.2020. - 02.10.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Traffic state estimation ; Convolutional neural networks ; Speed profiles ; Intelligent transport systems

Sažetak
Determining the traffic state is one of the most attractive problems for experts in the field of Intelligent Transport Systems (ITS). In this paper, a deep learning model for determining the traffic state is presented. The model is based on Convolutional Neural Networks (CNN) and uses weekly speed profiles as input data. The proposed model consists of an input and output layer with addition to four convolutional layers, two pooling layers, and two fully connected layers that are extracting important features and classifying intersections as congested or not congested. We analyze data and predict traffic state for the most relevant road segments in the City of Zagreb which is the capital and largest city in Croatia. Speed profiles from included road segments are represented as one traffic image and used to train CNN. In that way traffic state for all sequentially connected road segments is estimated. The proposed method achieves a classification accuracy of more than 90% on three analyzed types of road topologies. The results show that CNN trained with traffic images can be used as a tool for traffic state estimation.

Izvorni jezik
Engleski

Znanstvena područja
Tehnologija prometa i transport, Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)

Ustanove:
Fakultet prometnih znanosti, Zagreb

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi www.mipro.hr

Citiraj ovu publikaciju:

Tišljarić, Leo; Carić, Tonči; Erdelić, Tomislav; Erdelić, Martina
Traffic State Estimation Using Speed Profiles and Convolutional Neural Networks // MIPRO 2020 43rd International Convention Proceedings / Skala, Karolj (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2020. str. 2147-2152 doi:10.23919/MIPRO48935.2020.9245177 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), ostalo)
Tišljarić, L., Carić, T., Erdelić, T. & Erdelić, M. (2020) Traffic State Estimation Using Speed Profiles and Convolutional Neural Networks. U: Skala, K. (ur.)MIPRO 2020 43rd International Convention Proceedings doi:10.23919/MIPRO48935.2020.9245177.
@article{article, author = {Ti\v{s}ljari\'{c}, Leo and Cari\'{c}, Ton\v{c}i and Erdeli\'{c}, Tomislav and Erdeli\'{c}, Martina}, editor = {Skala, K.}, year = {2020}, pages = {2147-2152}, DOI = {10.23919/MIPRO48935.2020.9245177}, keywords = {Traffic state estimation, Convolutional neural networks, Speed profiles, Intelligent transport systems}, doi = {10.23919/MIPRO48935.2020.9245177}, title = {Traffic State Estimation Using Speed Profiles and Convolutional Neural Networks}, keyword = {Traffic state estimation, Convolutional neural networks, Speed profiles, Intelligent transport systems}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {Ti\v{s}ljari\'{c}, Leo and Cari\'{c}, Ton\v{c}i and Erdeli\'{c}, Tomislav and Erdeli\'{c}, Martina}, editor = {Skala, K.}, year = {2020}, pages = {2147-2152}, DOI = {10.23919/MIPRO48935.2020.9245177}, keywords = {Traffic state estimation, Convolutional neural networks, Speed profiles, Intelligent transport systems}, doi = {10.23919/MIPRO48935.2020.9245177}, title = {Traffic State Estimation Using Speed Profiles and Convolutional Neural Networks}, keyword = {Traffic state estimation, Convolutional neural networks, Speed profiles, Intelligent transport systems}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Conference Proceedings Citation Index - Science (CPCI-S)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font