Pregled bibliografske jedinice broj: 1083515
Transformation and Validation Methods in Allometric Remote Sensing Based Equations
Transformation and Validation Methods in Allometric Remote Sensing Based Equations // Book of Abstracts 18th International Conference on Operational Research / Arnerić, Josip ; Čeh Časni, Anita (ur.).
Šibenik, Hrvatska, 2020. str. 46-47 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1083515 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Transformation and Validation Methods in
Allometric Remote Sensing Based Equations
Autori
Tafro, Azra ; Balenović, Ivan ; Jazbec, Anamarija
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Book of Abstracts 18th International Conference on Operational Research
/ Arnerić, Josip ; Čeh Časni, Anita - , 2020, 46-47
Skup
18th International Conference on Operational Research (KOI 2020)
Mjesto i datum
Šibenik, Hrvatska, 23.09.2020. - 25.09.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
allometry ; nonlinear regression ; log-linear regression ; validation
Sažetak
In addition to classical (time-consuming and labor-intensive) field measurements, remote sensing methods can be used to estimate various forest attributes at individual tree, plot or stand level. Remote sensing methods can reduce field work and improve the efficiency, but the accuracy of obtained results have to be carefully tested and evaluated. In this study, plot level volume of pedunculate oak forest was estimated using metrics extracted from digital surface model derived from aerial images and normalized using digital terrain model derived from airborne laser scanning. Traditional allometric equations for volume estimation are developed using linear regression on log- transformed data, which often causes bias in the estimation when errors are not additive. Several correction methods have been proposed to varying degrees of success, depending on the quantity of interest. Additionally, smaller sample sizes can cause poor goodness of fit, and greater variance in model error estimation. In this paper, the authors study bias in volume estimation, using multiple assessment and validation methods, to propose the optimal model for this type of data.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Šumarstvo, Interdisciplinarne biotehničke znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-7686 - Uporaba podataka daljinskih istraživanja dobivenih različitim 3D optičkim izvorima u izmjeri šuma (3D-FORINVENT) (Balenović, Ivan, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Hrvatski šumarski institut, Jastrebarsko,
Fakultet šumarstva i drvne tehnologije