Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1082973

Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs


Crnković, Dean; Egan, Ronan; Švob, Andrea
Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs // Advances in mathematics of communications, 14 (2020), 4; 591-602 doi:10.3934/amc.2020032 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1082973 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs

Autori
Crnković, Dean ; Egan, Ronan ; Švob, Andrea

Izvornik
Advances in mathematics of communications (1930-5346) 14 (2020), 4; 591-602

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Strongly regular graph, Seidel matrix, Laplacian matrix, orbit matrix, self-orthogonal code

Sažetak
In this paper we introduce the notion of orbit matrices of integer matrices such as Seidel and Laplacian matrices of some strongly regular graphs with respect to their permutation automorphism groups. We further show that under certain conditions these orbit matrices yield self-orthogonal codes over finite fields $\mathbb{;F};_q$, where $q$ is a prime power and over finite rings $\mathbb{;Z};_m$. As a case study, we construct codes from orbit matrices of Seidel, Laplacian and signless Laplacian matrices of strongly regular graphs. In particular, we construct self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of the Higman-Sims and McLaughlin graphs.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2018-01-6732 - Kombinatorički objekti i kodovi (COCo) (Crnković, Dean, HRZZ ) ( CroRIS)

Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku

Profili:

Avatar Url Andrea Švob (autor)

Avatar Url Dean Crnković (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Crnković, Dean; Egan, Ronan; Švob, Andrea
Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs // Advances in mathematics of communications, 14 (2020), 4; 591-602 doi:10.3934/amc.2020032 (međunarodna recenzija, članak, znanstveni)
Crnković, D., Egan, R. & Švob, A. (2020) Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs. Advances in mathematics of communications, 14 (4), 591-602 doi:10.3934/amc.2020032.
@article{article, author = {Crnkovi\'{c}, Dean and Egan, Ronan and \v{S}vob, Andrea}, year = {2020}, pages = {591-602}, DOI = {10.3934/amc.2020032}, keywords = {Strongly regular graph, Seidel matrix, Laplacian matrix, orbit matrix, self-orthogonal code}, journal = {Advances in mathematics of communications}, doi = {10.3934/amc.2020032}, volume = {14}, number = {4}, issn = {1930-5346}, title = {Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs}, keyword = {Strongly regular graph, Seidel matrix, Laplacian matrix, orbit matrix, self-orthogonal code} }
@article{article, author = {Crnkovi\'{c}, Dean and Egan, Ronan and \v{S}vob, Andrea}, year = {2020}, pages = {591-602}, DOI = {10.3934/amc.2020032}, keywords = {Strongly regular graph, Seidel matrix, Laplacian matrix, orbit matrix, self-orthogonal code}, journal = {Advances in mathematics of communications}, doi = {10.3934/amc.2020032}, volume = {14}, number = {4}, issn = {1930-5346}, title = {Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs}, keyword = {Strongly regular graph, Seidel matrix, Laplacian matrix, orbit matrix, self-orthogonal code} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font