Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1082776

Efficient Double-Tee Junction Mixing Assessment by Machine Learning


Grbčić, Luka; Kranjčević, Lado; Družeta, Siniša; Lučin, Ivana
Efficient Double-Tee Junction Mixing Assessment by Machine Learning // Water, 12 (2020), 1; 238, 16 doi:10.3390/w12010238 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1082776 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Efficient Double-Tee Junction Mixing Assessment by Machine Learning

Autori
Grbčić, Luka ; Kranjčević, Lado ; Družeta, Siniša ; Lučin, Ivana

Izvornik
Water (2073-4441) 12 (2020), 1; 238, 16

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
mixing phenomena ; double-Tee junctions ; machine learning ; artificial neural networks ; support vector regression ; CFD model

Sažetak
A new approach in modeling of mixing phenomena in double-Tee pipe junctions based on machine learning is presented in this paper. Machine learning represents a paradigm shift that can be efficiently used to calculate needed mixing parameters. Usually, these parameters are obtained either by experiment or by computational fluid dynamics (CFD) numerical modeling. A machine learning approach is used together with a CFD model. The CFD model was calibrated with experimental data from a previous study and it served as a generator of input data for the machine learning metamodels— Artificial Neural Network (ANN) and Support Vector Regression (SVR). Metamodel input variables are defined as inlet pipe flow ratio, outlet pipe flow ratio, and the distance between the pipe junctions, with the output parameter being the branch pipe outlet to main inlet pipe mixing ratio. A comparison of ANN and SVR models showed that ANN outperforms SVR in accuracy for a given problem. Consequently, ANN proved to be a viable way to model mixing phenomena in double-Tee junctions also because its mixing prediction time is extremely efficient (compared to CFD time). Because of its high computational efficiency, the machine learning metamodel can be directly incorporated into pipe network numerical models in future studies.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Strojarstvo, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište u Rijeci

Profili:

Avatar Url Siniša Družeta (autor)

Avatar Url Lado Kranjčević (autor)

Avatar Url Ivana Lučin (autor)

Avatar Url Luka Grbčić (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Grbčić, Luka; Kranjčević, Lado; Družeta, Siniša; Lučin, Ivana
Efficient Double-Tee Junction Mixing Assessment by Machine Learning // Water, 12 (2020), 1; 238, 16 doi:10.3390/w12010238 (međunarodna recenzija, članak, znanstveni)
Grbčić, L., Kranjčević, L., Družeta, S. & Lučin, I. (2020) Efficient Double-Tee Junction Mixing Assessment by Machine Learning. Water, 12 (1), 238, 16 doi:10.3390/w12010238.
@article{article, author = {Grb\v{c}i\'{c}, Luka and Kranj\v{c}evi\'{c}, Lado and Dru\v{z}eta, Sini\v{s}a and Lu\v{c}in, Ivana}, year = {2020}, pages = {16}, DOI = {10.3390/w12010238}, chapter = {238}, keywords = {mixing phenomena, double-Tee junctions, machine learning, artificial neural networks, support vector regression, CFD model}, journal = {Water}, doi = {10.3390/w12010238}, volume = {12}, number = {1}, issn = {2073-4441}, title = {Efficient Double-Tee Junction Mixing Assessment by Machine Learning}, keyword = {mixing phenomena, double-Tee junctions, machine learning, artificial neural networks, support vector regression, CFD model}, chapternumber = {238} }
@article{article, author = {Grb\v{c}i\'{c}, Luka and Kranj\v{c}evi\'{c}, Lado and Dru\v{z}eta, Sini\v{s}a and Lu\v{c}in, Ivana}, year = {2020}, pages = {16}, DOI = {10.3390/w12010238}, chapter = {238}, keywords = {mixing phenomena, double-Tee junctions, machine learning, artificial neural networks, support vector regression, CFD model}, journal = {Water}, doi = {10.3390/w12010238}, volume = {12}, number = {1}, issn = {2073-4441}, title = {Efficient Double-Tee Junction Mixing Assessment by Machine Learning}, keyword = {mixing phenomena, double-Tee junctions, machine learning, artificial neural networks, support vector regression, CFD model}, chapternumber = {238} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font