Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1082531

Predicting the transport properties of silicene nanoribbons using a neural network


Župančić, Tin; Stresec, Ivan; Poljak, Mirko
Predicting the transport properties of silicene nanoribbons using a neural network // Proceedings of Intl. Conv. MIPRO-MEET (Microelectronics, Electronics and Electronic Technology) / Skala, Karolj (ur.).
Rijeka, 2020. str. 51-55 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1082531 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Predicting the transport properties of silicene nanoribbons using a neural network

Autori
Župančić, Tin ; Stresec, Ivan ; Poljak, Mirko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of Intl. Conv. MIPRO-MEET (Microelectronics, Electronics and Electronic Technology) / Skala, Karolj - Rijeka, 2020, 51-55

Skup
43rd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2020) ; Microelectronics, Electronics and Electronic Technology (MEET 2020)

Mjesto i datum
Opatija, Hrvatska, 28.09.2020. - 02.10.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
quantum transport ; silicene nanoribbon ; mobility ; bandgap ; neural network ; TensorFlow ; Keras

Sažetak
Atomistic quantum transport simulations are used to generate the electronic and transport properties of 10, 000 realistic silicene nanoribbons (SiNRs) with edge defects. This ensemble of 20 nm-long and 2.1 nm-wide SiNRs is divided into the training and inference set for the artificial neural network (ANN) employed for the prediction of edge-defect-limited carrier mobility from the known values of bandgap and nanoribbon conductance. We find that an optimized ANN with 3 hidden layers can predict SiNR mobility values and variability histograms with acceptable accuracy, thus providing a useful supplement to atomistic quantum transport simulations that take several hours or days for large device ensemble sizes.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
HRZZ-UIP-2019-04-3493 - Računalno projektiranje nanotranzistora temeljenih na novim 2D materijalima (CONAN2D) (Poljak, Mirko, HRZZ ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Mirko Poljak (autor)

Avatar Url Ivan Stresec (autor)


Citiraj ovu publikaciju:

Župančić, Tin; Stresec, Ivan; Poljak, Mirko
Predicting the transport properties of silicene nanoribbons using a neural network // Proceedings of Intl. Conv. MIPRO-MEET (Microelectronics, Electronics and Electronic Technology) / Skala, Karolj (ur.).
Rijeka, 2020. str. 51-55 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Župančić, T., Stresec, I. & Poljak, M. (2020) Predicting the transport properties of silicene nanoribbons using a neural network. U: Skala, K. (ur.)Proceedings of Intl. Conv. MIPRO-MEET (Microelectronics, Electronics and Electronic Technology).
@article{article, author = {\v{Z}upan\v{c}i\'{c}, Tin and Stresec, Ivan and Poljak, Mirko}, editor = {Skala, K.}, year = {2020}, pages = {51-55}, keywords = {quantum transport, silicene nanoribbon, mobility, bandgap, neural network, TensorFlow, Keras}, title = {Predicting the transport properties of silicene nanoribbons using a neural network}, keyword = {quantum transport, silicene nanoribbon, mobility, bandgap, neural network, TensorFlow, Keras}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {\v{Z}upan\v{c}i\'{c}, Tin and Stresec, Ivan and Poljak, Mirko}, editor = {Skala, K.}, year = {2020}, pages = {51-55}, keywords = {quantum transport, silicene nanoribbon, mobility, bandgap, neural network, TensorFlow, Keras}, title = {Predicting the transport properties of silicene nanoribbons using a neural network}, keyword = {quantum transport, silicene nanoribbon, mobility, bandgap, neural network, TensorFlow, Keras}, publisherplace = {Opatija, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font