Pregled bibliografske jedinice broj: 1082527
A Comparison of Machine Learning-Based Individual Mobility Classification Models Developed on Sensor Readings from Loosely Attached Smartphones
A Comparison of Machine Learning-Based Individual Mobility Classification Models Developed on Sensor Readings from Loosely Attached Smartphones // Komunikácie, 22 (2020), 4; 153-162 doi:10.26552/com.C.2020.4.153-162 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1082527 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Comparison of Machine Learning-Based
Individual Mobility Classification Models
Developed on Sensor Readings from Loosely
Attached Smartphones
Autori
Filjar, Renato ; Sklebar, Ivan ; Horvat, Marko
Izvornik
Komunikácie (1335-4205) 22
(2020), 4;
153-162
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
mobility classification ; smartphone ; inertial sensor ; statistical learning
Sažetak
General mobility estimation is demanded for strategy, policy, systems and services developments and operations in transport, urban development and telecommunications. Here is proposed an individual motion readings collection with preserved privacy through loosely fit smartphones, as a novel sole inertial sensors use in commercial-grade smartphones for a wide population data collection, without the need for the new infrastructure and attaching devices. It is shown that the statistical learning-based models of individual mobility classification per means of transport are capable of overcoming the variance introduced by the proposed data collection method. The success of the proposed methodology in a small-scale experiment for the Individual Mobility Classification Model development, using selected statistical learning methods, is demonstrated.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Veleučilište Hrvatsko zagorje Krapina,
Hrvatsko katoličko sveučilište, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus
Uključenost u ostale bibliografske baze podataka::
- EBSCO Host