Pregled bibliografske jedinice broj: 1080755
Forecasting Stock Index Movement Using Stationary Wavelet Transform and Long ShortTerm Memory network
Forecasting Stock Index Movement Using Stationary Wavelet Transform and Long ShortTerm Memory network // My First Conference Book of Abstracts
Rijeka, Hrvatska, 2020. str. 34-35 (predavanje, recenziran, sažetak, znanstveni)
CROSBI ID: 1080755 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Forecasting Stock Index Movement Using
Stationary Wavelet Transform and Long ShortTerm
Memory network
Autori
Daniel Štifanić, Adrijana Miočević, Zlatan Car
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
My First Conference Book of Abstracts
/ - , 2020, 34-35
Skup
4th edition of annual conference for doctoral students of engineering and technology „MY FIRST CONFERENCE“
Mjesto i datum
Rijeka, Hrvatska, 24.09.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Recenziran
Ključne riječi
Intraday Stock Data, Stock Market Movement, Unit Root Test, Wavelet transform, Long Short-Term Memory
Sažetak
Forecasting the stock prices with a satisfying accuracy can be considered a highly challenging task due to non-linearity and non- stationarity of the stock market data [1]. Therefore, movements of financial markets behave, according to previous studies, in a dynamic and non-linear manner [2]. In order to help investors, analyst and traders, movement and future direction of the stock market can be predicted with the help of AIbased system. Such system can provide valuable and supportive information about the future situation of the market, which is important for successful investment and maximizing profits. In this research, authors investigate the predictability of NASDAQ Composite movement direction by integrating the Stationary Wavelet Transform (SWT) with Long Short-Term Memory (LSTM) networks. First, the Unit Root Test is performed in order to examine data stationarity. Afterwards, the time-series data is decomposed by utilizing SWT to obtain low and high frequency components which are then used as input variables for the LSTM network. The performance of the trained model is evaluated using Root Mean Square Error (RMSE) measure. Satisfactory results for intraday stock price forecasting are achieved with a combination of four-level SWT using Haar wavelet and LSTM network.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Ekonomija
POVEZANOST RADA
Projekti:
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
Ostalo-CEI - 305.6019-20 - Use of regressive artificial intelligence (AI) and machine learning (ML) methods in modelling of COVID-19 spread (COVIDAi) (Car, Zlatan, Ostalo - CEI Extraordinary Call for Proposals 2020) ( CroRIS)
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
InoUstZnVO-CIII-HR-0108-10 - Concurrent Product and Technology Development - Teaching, Research and Implementation of Joint Programs Oriented in Production and Industrial Engineering (Car, Zlatan, InoUstZnVO - CEEPUS) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
CIII-HR-0108
KK.01.2.2.03.0004
305.6019-20
uniri-tehnic-18-275-1447
Ustanove:
Tehnički fakultet, Rijeka
Profili:
Zlatan Car
(autor)