Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1080755

Forecasting Stock Index Movement Using Stationary Wavelet Transform and Long ShortTerm Memory network


Daniel Štifanić, Adrijana Miočević, Zlatan Car
Forecasting Stock Index Movement Using Stationary Wavelet Transform and Long ShortTerm Memory network // My First Conference Book of Abstracts
Rijeka, Hrvatska, 2020. str. 34-35 (predavanje, recenziran, sažetak, znanstveni)


CROSBI ID: 1080755 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Forecasting Stock Index Movement Using Stationary Wavelet Transform and Long ShortTerm Memory network

Autori
Daniel Štifanić, Adrijana Miočević, Zlatan Car

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
My First Conference Book of Abstracts / - , 2020, 34-35

Skup
4th edition of annual conference for doctoral students of engineering and technology „MY FIRST CONFERENCE“

Mjesto i datum
Rijeka, Hrvatska, 24.09.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Recenziran

Ključne riječi
Intraday Stock Data, Stock Market Movement, Unit Root Test, Wavelet transform, Long Short-Term Memory

Sažetak
Forecasting the stock prices with a satisfying accuracy can be considered a highly challenging task due to non-linearity and non- stationarity of the stock market data [1]. Therefore, movements of financial markets behave, according to previous studies, in a dynamic and non-linear manner [2]. In order to help investors, analyst and traders, movement and future direction of the stock market can be predicted with the help of AIbased system. Such system can provide valuable and supportive information about the future situation of the market, which is important for successful investment and maximizing profits. In this research, authors investigate the predictability of NASDAQ Composite movement direction by integrating the Stationary Wavelet Transform (SWT) with Long Short-Term Memory (LSTM) networks. First, the Unit Root Test is performed in order to examine data stationarity. Afterwards, the time-series data is decomposed by utilizing SWT to obtain low and high frequency components which are then used as input variables for the LSTM network. The performance of the trained model is evaluated using Root Mean Square Error (RMSE) measure. Satisfactory results for intraday stock price forecasting are achieved with a combination of four-level SWT using Haar wavelet and LSTM network.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Ekonomija



POVEZANOST RADA


Projekti:
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
Ostalo-CEI - 305.6019-20 - Use of regressive artificial intelligence (AI) and machine learning (ML) methods in modelling of COVID-19 spread (COVIDAi) (Car, Zlatan, Ostalo - CEI Extraordinary Call for Proposals 2020) ( CroRIS)
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
InoUstZnVO-CIII-HR-0108-10 - Concurrent Product and Technology Development - Teaching, Research and Implementation of Joint Programs Oriented in Production and Industrial Engineering (Car, Zlatan, InoUstZnVO - CEEPUS) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
CIII-HR-0108
KK.01.2.2.03.0004
305.6019-20
uniri-tehnic-18-275-1447

Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Zlatan Car (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Daniel Štifanić, Adrijana Miočević, Zlatan Car
Forecasting Stock Index Movement Using Stationary Wavelet Transform and Long ShortTerm Memory network // My First Conference Book of Abstracts
Rijeka, Hrvatska, 2020. str. 34-35 (predavanje, recenziran, sažetak, znanstveni)
Daniel Štifanić, Adrijana Miočević, Zlatan Car (2020) Forecasting Stock Index Movement Using Stationary Wavelet Transform and Long ShortTerm Memory network. U: My First Conference Book of Abstracts.
@article{article, year = {2020}, pages = {34-35}, keywords = {Intraday Stock Data, Stock Market Movement, Unit Root Test, Wavelet transform, Long Short-Term Memory}, title = {Forecasting Stock Index Movement Using Stationary Wavelet Transform and Long ShortTerm Memory network}, keyword = {Intraday Stock Data, Stock Market Movement, Unit Root Test, Wavelet transform, Long Short-Term Memory}, publisherplace = {Rijeka, Hrvatska} }
@article{article, year = {2020}, pages = {34-35}, keywords = {Intraday Stock Data, Stock Market Movement, Unit Root Test, Wavelet transform, Long Short-Term Memory}, title = {Forecasting Stock Index Movement Using Stationary Wavelet Transform and Long ShortTerm Memory network}, keyword = {Intraday Stock Data, Stock Market Movement, Unit Root Test, Wavelet transform, Long Short-Term Memory}, publisherplace = {Rijeka, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font