Pregled bibliografske jedinice broj: 1080744
Diagnostic of Bladder Cancer Using Hybrid Neural Networks Based on Edge Detectors
Diagnostic of Bladder Cancer Using Hybrid Neural Networks Based on Edge Detectors // My First Conference Book of Abstracts
Rijeka, 2020. str. 22-23 (predavanje, recenziran, sažetak, znanstveni)
CROSBI ID: 1080744 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Diagnostic of Bladder Cancer Using Hybrid Neural
Networks Based on Edge Detectors
Autori
Ivan Lorencin, Josip Španjol, Antun Gršković, Zlatan Car
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
My First Conference Book of Abstracts
/ - Rijeka, 2020, 22-23
Skup
4th edition of annual conference for doctoral students of engineering and technology „MY FIRST CONFERENCE“
Mjesto i datum
Rijeka, Hrvatska, 24.09.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Recenziran
Ključne riječi
Artificial Neural Network, AUC, Bladder Cancer Diagnosis, Edge detector, Hybrid model
Sažetak
Bladder cancer is one of the most common malignant diseases of the urinary tract and is the fourth most common malignant disease in men in Croatia [1]. The diagnostic procedure for bladder cancer usually consists of a biopsy and pathohistological findings. Such an approach can often be invasive and time consuming [2]. For this reason, an endomicroscopic method based on confocal laser endomicroscopy (CLE) supported by artificial intelligence algorithms is being introduced into clinical practice. The application of artificial intelligence in problems of medical image recognition is most often based on the application of artificial neural networks (ANN), most often convolutional neural networks (CNN). The selection of CNN models may require considerable computing resources, which are often unavailable in clinical practice. For this reason, edge detectorsbased neural network hybrid models are being introduced. Such approaches offer a stabile classification performance with much simpler neural network architectures [3]. In this paper, a multi-class classification approach that is based on four classes (high- grade carcinoma, low-grade carcinoma, carcinoma in situ and healthy mucosa) is presented. From obtained results it can be noticed that such an approach offers stabile classification performances for multi-class classification as well, achieving macro AUC of 0.98 and micro AUC of 0.97
Izvorni jezik
Hrvatski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne medicinske znanosti
POVEZANOST RADA
Projekti:
Ostalo-CEI - 305.6019-20 - Use of regressive artificial intelligence (AI) and machine learning (ML) methods in modelling of COVID-19 spread (COVIDAi) (Car, Zlatan, Ostalo - CEI Extraordinary Call for Proposals 2020) ( CroRIS)
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
InoUstZnVO-CIII-HR-0108-10 - Concurrent Product and Technology Development - Teaching, Research and Implementation of Joint Programs Oriented in Production and Industrial Engineering (Car, Zlatan, InoUstZnVO - CEEPUS) ( CroRIS)
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
CIII-HR-0108
KK.01.2.2.03.0004
305.6019-20
uniri-tehnic-18-275-1447
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
Ustanove:
Medicinski fakultet, Rijeka,
Tehnički fakultet, Rijeka,
Klinički bolnički centar Rijeka