Pregled bibliografske jedinice broj: 1079712
State Complexity Reduction in Reinforcement Learning based Adaptive Traffic Signal Control
State Complexity Reduction in Reinforcement Learning based Adaptive Traffic Signal Control // Proceedings of ELMAR-2020 / Muštra, Mario ; Vuković, Vuković ; Zovko-Cihlar, Branka (ur.).
Zagreb: Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2020. str. 61-66 doi:10.1109/ELMAR49956.2020.9219024 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1079712 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
State Complexity Reduction in Reinforcement
Learning based Adaptive Traffic Signal Control
Autori
Miletić, Mladen ; Kušić, Krešimir ; Gregurić, Martin ; Ivanjko, Edouard
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of ELMAR-2020
/ Muštra, Mario ; Vuković, Vuković ; Zovko-Cihlar, Branka - Zagreb : Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2020, 61-66
ISBN
979-1-7281-5972-0
Skup
62nd International Symposium ELMAR-2020
Mjesto i datum
Zadar, Hrvatska, 14.09.2020. - 15.09.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Intelligent Transportation Systems ; Adaptive Traffic Signal Control ; Reinforcement Learning ; Self-Organizing Maps ; Machine Learning
Sažetak
The throughput of a signalized intersection can be increased by appropriate adjustment of the signal program using Adaptive Traffic Signal Control (ATSC). One possible approach is to use Reinforcement Learning (RL). It enables model-free learning of the control law for the reduction of the negative impacts of traffic congestion. RL based ATSC achieves good results but requires many learning iterations to train optimal control policy due to high state-action complexity. In this paper, a novel approach for state complexity reduction in RL by using Self-Organizing Maps (SOM) is presented. With SOM, the convergence rate of RL and system stability in the later stages of learning is increased. The proposed approach is evaluated against the traditional RL approach that uses Q-Learning on a simulated isolated intersection calibrated according to realistic traffic data. Presented simulation results prove the effectiveness of the proposed approach regarding learning stability and traffic measures of effectiveness.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Tehnologija prometa i transport
POVEZANOST RADA
Projekti:
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
Ustanove:
Fakultet prometnih znanosti, Zagreb
Profili:
Martin Gregurić
(autor)
Edouard Ivanjko
(autor)
Krešimir Kušić
(autor)
Mladen Miletić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus