Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1079712

State Complexity Reduction in Reinforcement Learning based Adaptive Traffic Signal Control


Miletić, Mladen; Kušić, Krešimir; Gregurić, Martin; Ivanjko, Edouard
State Complexity Reduction in Reinforcement Learning based Adaptive Traffic Signal Control // Proceedings of ELMAR-2020 / Muštra, Mario ; Vuković, Vuković ; Zovko-Cihlar, Branka (ur.).
Zagreb: Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2020. str. 61-66 doi:10.1109/ELMAR49956.2020.9219024 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1079712 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
State Complexity Reduction in Reinforcement Learning based Adaptive Traffic Signal Control

Autori
Miletić, Mladen ; Kušić, Krešimir ; Gregurić, Martin ; Ivanjko, Edouard

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of ELMAR-2020 / Muštra, Mario ; Vuković, Vuković ; Zovko-Cihlar, Branka - Zagreb : Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2020, 61-66

ISBN
979-1-7281-5972-0

Skup
62nd International Symposium ELMAR-2020

Mjesto i datum
Zadar, Hrvatska, 14.09.2020. - 15.09.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Intelligent Transportation Systems ; Adaptive Traffic Signal Control ; Reinforcement Learning ; Self-Organizing Maps ; Machine Learning

Sažetak
The throughput of a signalized intersection can be increased by appropriate adjustment of the signal program using Adaptive Traffic Signal Control (ATSC). One possible approach is to use Reinforcement Learning (RL). It enables model-free learning of the control law for the reduction of the negative impacts of traffic congestion. RL based ATSC achieves good results but requires many learning iterations to train optimal control policy due to high state-action complexity. In this paper, a novel approach for state complexity reduction in RL by using Self-Organizing Maps (SOM) is presented. With SOM, the convergence rate of RL and system stability in the later stages of learning is increased. The proposed approach is evaluated against the traditional RL approach that uses Q-Learning on a simulated isolated intersection calibrated according to realistic traffic data. Presented simulation results prove the effectiveness of the proposed approach regarding learning stability and traffic measures of effectiveness.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Tehnologija prometa i transport



POVEZANOST RADA


Projekti:
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )

Ustanove:
Fakultet prometnih znanosti, Zagreb

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Miletić, Mladen; Kušić, Krešimir; Gregurić, Martin; Ivanjko, Edouard
State Complexity Reduction in Reinforcement Learning based Adaptive Traffic Signal Control // Proceedings of ELMAR-2020 / Muštra, Mario ; Vuković, Vuković ; Zovko-Cihlar, Branka (ur.).
Zagreb: Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2020. str. 61-66 doi:10.1109/ELMAR49956.2020.9219024 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Miletić, M., Kušić, K., Gregurić, M. & Ivanjko, E. (2020) State Complexity Reduction in Reinforcement Learning based Adaptive Traffic Signal Control. U: Muštra, M., Vuković, V. & Zovko-Cihlar, B. (ur.)Proceedings of ELMAR-2020 doi:10.1109/ELMAR49956.2020.9219024.
@article{article, author = {Mileti\'{c}, Mladen and Ku\v{s}i\'{c}, Kre\v{s}imir and Greguri\'{c}, Martin and Ivanjko, Edouard}, year = {2020}, pages = {61-66}, DOI = {10.1109/ELMAR49956.2020.9219024}, keywords = {Intelligent Transportation Systems, Adaptive Traffic Signal Control, Reinforcement Learning, Self-Organizing Maps, Machine Learning}, doi = {10.1109/ELMAR49956.2020.9219024}, isbn = {979-1-7281-5972-0}, title = {State Complexity Reduction in Reinforcement Learning based Adaptive Traffic Signal Control}, keyword = {Intelligent Transportation Systems, Adaptive Traffic Signal Control, Reinforcement Learning, Self-Organizing Maps, Machine Learning}, publisher = {Fakultet elektrotehnike i ra\v{c}unarstva Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Zadar, Hrvatska} }
@article{article, author = {Mileti\'{c}, Mladen and Ku\v{s}i\'{c}, Kre\v{s}imir and Greguri\'{c}, Martin and Ivanjko, Edouard}, year = {2020}, pages = {61-66}, DOI = {10.1109/ELMAR49956.2020.9219024}, keywords = {Intelligent Transportation Systems, Adaptive Traffic Signal Control, Reinforcement Learning, Self-Organizing Maps, Machine Learning}, doi = {10.1109/ELMAR49956.2020.9219024}, isbn = {979-1-7281-5972-0}, title = {State Complexity Reduction in Reinforcement Learning based Adaptive Traffic Signal Control}, keyword = {Intelligent Transportation Systems, Adaptive Traffic Signal Control, Reinforcement Learning, Self-Organizing Maps, Machine Learning}, publisher = {Fakultet elektrotehnike i ra\v{c}unarstva Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Zadar, Hrvatska} }

Časopis indeksira:


  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font