Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1078904

Spatio-temporal salinity monitoring of the Ghaghara river using Landsat time-series imagery and multiple regression analysis


Gašparović, Mateo; Singh, Sudhir Kumar
Spatio-temporal salinity monitoring of the Ghaghara river using Landsat time-series imagery and multiple regression analysis // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Nica, Francuska, 2020. str. 401-405 doi:10.5194/isprs-archives-XLIII-B3-2020-401-2020 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1078904 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Spatio-temporal salinity monitoring of the Ghaghara river using Landsat time-series imagery and multiple regression analysis

Autori
Gašparović, Mateo ; Singh, Sudhir Kumar

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences / - , 2020, 401-405

Skup
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Congress 2020)

Mjesto i datum
Nica, Francuska, 31.08.2020. - 02.09.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Spatio-temporal ; Monitoring ; Water salinity ; Modelling ; Landsat

Sažetak
Nowadays, water has become one of the most important environmental issues for our ecosystem and is facing major challenges today. During the COVID-19 pandemic, the world has understood the need for good quality of water for sanitation and hygiene. Earth observing satellites plays a critical role in near-real- time detection and monitoring of land and water change and quality. This research presents a methodology for modeling and mapping water salinity in high spatial resolution. Data for modeling were measured on the five monitoring stations (Ayodhya, Basti, Birdghat, Paliakalan, and Turtipar) along the Ghagraha River Basin in India, during the period of 28 years (1985– 2013). In this research, Electrical Conductivity (EC) as water salinity parameter modeled by means of Landsat 5 satellite imagery. All available Landsat 5 imagery were acquired on the same date as the ground measurement data was utilized for the modeling. Modeling was done based on linear, 2nd and 3rd polynomial multiple regression analysis. All statistical parameters for accuracy assessment show that 3rd degree polynomial performs better EC prediction capability than 2nd degree polynomial and linear regression. The 3rd degree polynomial multiple regression model RMSE, R2, MAE, p-value were 8.682, 0.993, 6.493, 0.008, respectively. The developed algorithm provides new knowledge that can be widely applied in various environmental research mapping and monitoring like water salinity. Also, this method allows rapid detection of water pollution, which has an important impact on human health, agriculture, and the environment.

Izvorni jezik
Engleski

Znanstvena područja
Geodezija



POVEZANOST RADA


Projekti:
RS4ENVIRO

Ustanove:
Geodetski fakultet, Zagreb

Profili:

Avatar Url Mateo Gašparović (autor)

Citiraj ovu publikaciju:

Gašparović, Mateo; Singh, Sudhir Kumar
Spatio-temporal salinity monitoring of the Ghaghara river using Landsat time-series imagery and multiple regression analysis // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Nica, Francuska, 2020. str. 401-405 doi:10.5194/isprs-archives-XLIII-B3-2020-401-2020 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Gašparović, M. & Singh, S. (2020) Spatio-temporal salinity monitoring of the Ghaghara river using Landsat time-series imagery and multiple regression analysis. U: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences doi:10.5194/isprs-archives-XLIII-B3-2020-401-2020.
@article{article, author = {Ga\v{s}parovi\'{c}, Mateo and Singh, Sudhir Kumar}, year = {2020}, pages = {401-405}, DOI = {10.5194/isprs-archives-XLIII-B3-2020-401-2020}, keywords = {Spatio-temporal, Monitoring, Water salinity, Modelling, Landsat}, doi = {10.5194/isprs-archives-XLIII-B3-2020-401-2020}, title = {Spatio-temporal salinity monitoring of the Ghaghara river using Landsat time-series imagery and multiple regression analysis}, keyword = {Spatio-temporal, Monitoring, Water salinity, Modelling, Landsat}, publisherplace = {Nica, Francuska} }
@article{article, author = {Ga\v{s}parovi\'{c}, Mateo and Singh, Sudhir Kumar}, year = {2020}, pages = {401-405}, DOI = {10.5194/isprs-archives-XLIII-B3-2020-401-2020}, keywords = {Spatio-temporal, Monitoring, Water salinity, Modelling, Landsat}, doi = {10.5194/isprs-archives-XLIII-B3-2020-401-2020}, title = {Spatio-temporal salinity monitoring of the Ghaghara river using Landsat time-series imagery and multiple regression analysis}, keyword = {Spatio-temporal, Monitoring, Water salinity, Modelling, Landsat}, publisherplace = {Nica, Francuska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font