Pregled bibliografske jedinice broj: 1078832
Unsupervised Facial Biometric Data Filtering for Age and Gender Estimation
Unsupervised Facial Biometric Data Filtering for Age and Gender Estimation // Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP
Prag, Češka Republika: SCITEPRESS, 2019. str. 209-217 doi:10.5220/0007257202090217 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1078832 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Unsupervised Facial Biometric Data Filtering for
Age and Gender Estimation
Autori
Bešenić, Krešimir ; Ahlberg, Jörgen ; Pandžić, Igor
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP
/ - : SCITEPRESS, 2019, 209-217
ISBN
978-989-758-354-4
Skup
International Conference on Computer Vision Theory and Applications (VISAPP)
Mjesto i datum
Prag, Češka Republika, 25.02.2019. - 27.02.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Filtering, Unsupervised, Biometric, Web-Scraping, Age, Gender
Sažetak
Availability of large training datasets was essential for the recent advancement and success of deep learning methods. Due to the difficulties related to biometric data collection, datasets with age and gender annotations are scarce and usually limited in terms of size and sample diversity. Web- scraping approaches for automatic data collection can produce large amounts weakly labeled noisy data. The unsupervised facial biometric data filtering method presented in this paper greatly reduces label noise levels in web-scraped facial biometric data. Experiments on two large state-of-the-art web- scraped facial datasets demonstrate the effectiveness of the proposed method, with respect to training and validation scores, training convergence, and generalization capabilities of trained age and gender estimators.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb