Pregled bibliografske jedinice broj: 1077884
Convergence of Nonperturbative Approximations to the Renormalization Group
Convergence of Nonperturbative Approximations to the Renormalization Group // Physical Review Letters, 123 (2019), 24; 240604, 5 doi:10.1103/physrevlett.123.240604 (međunarodna recenzija, pismo, ostalo)
CROSBI ID: 1077884 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Convergence of Nonperturbative Approximations to the Renormalization Group
Autori
Balog, Ivan ; Chaté, Hugues ; Delamotte, Bertrand ; Marohnić, Maroje ; Wschebor, Nicolás
Izvornik
Physical Review Letters (0031-9007) 123
(2019), 24;
240604, 5
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, pismo, ostalo
Ključne riječi
functional renormalization group, Ising model, derivative expansion
Sažetak
We provide analytical arguments showing that the “nonperturbative” approximation scheme to Wilson’s renormalization group known as the derivative expansion has a finite radius of convergence. We also provide guidelines for choosing the regulator function at the heart of the procedure and propose empirical rules for selecting an optimal one, without prior knowledge of the problem at stake. Using the Ising model in three dimensions as a testing ground and the derivative expansion at order six, we find fast convergence of critical exponents to their exact values, irrespective of the well-behaved regulator used, in full agreement with our general arguments. We hope these findings will put an end to disputes regarding this type of nonperturbative methods.
Izvorni jezik
Engleski
Znanstvena područja
Fizika
POVEZANOST RADA
Ustanove:
Institut za fiziku, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE