Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1077453

Transfer Learning with U-Net type model for Automatic Segmentation of Three Retinal Layers In Optical Coherence Tomography Images


Zadro Matovinović, Ivana; Lončarić Sven; Lo, Julian; Heisler, Morgan; Sarunic, Marinko
Transfer Learning with U-Net type model for Automatic Segmentation of Three Retinal Layers In Optical Coherence Tomography Images // Proceedings of the 11th International Symposium on Image and Signal Processing and Analysis
Dubrovnik, Hrvatska, 2019. str. 49-53 doi:10.1109/ISPA.2019.8868639 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1077453 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Transfer Learning with U-Net type model for Automatic Segmentation of Three Retinal Layers In Optical Coherence Tomography Images

Autori
Zadro Matovinović, Ivana ; Lončarić Sven ; Lo, Julian ; Heisler, Morgan ; Sarunic, Marinko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 11th International Symposium on Image and Signal Processing and Analysis / - , 2019, 49-53

Skup
11th International Symposium on Image and Signal Processing and Analysis (ISPA 2019)

Mjesto i datum
Dubrovnik, Hrvatska, 23.09.2019. - 25.09.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Age Related Macular Degeneration , OCT , Retinal Layer Segmentation , Transfer Learning , U-Net , ResNet34

Sažetak
Retinal layer analysis on OCT images is a standard procedure used by ophthalmologists to diagnose various diseases. Due to a large number of generated OCT images for each patient, a manual image analysis can be time-consuming and error-prone, which can consequently affect the timeliness and quality of the diagnosis. Therefore, in recent years, a variety of methods, based prevalently on deep learning, have been proposed for the automatic segmentation of retinal layers. In our study, the U-Net type model with a ResNet based encoder, pretrained on ImageNet dataset is utilized. In addition, the model is combined with postprocessing step to obtain segmented layer boundaries. The modified versions of U-Net type model have already been applied to various non-medical imaging segmentation tasks, achieving outstanding results. To investigate whether the pretrained U-Net type model contributes to improvement of retinal layer segmentation, two models are trained and validated on 23 volumes of OCT images with age related macular degeneration (AMD): the U-Net model with pretrained ResNet34 encoder on ImageNet dataset and the original U-Net model, trained from the scratch. The one-sided Wilcoxon signed-rank test has shown that the pretrained U-Net type model outperforms the original U-Net model for segmenting three regions bounded by four layer boundaries.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Ivana Zadro (autor)

Avatar Url Sven Lončarić (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Zadro Matovinović, Ivana; Lončarić Sven; Lo, Julian; Heisler, Morgan; Sarunic, Marinko
Transfer Learning with U-Net type model for Automatic Segmentation of Three Retinal Layers In Optical Coherence Tomography Images // Proceedings of the 11th International Symposium on Image and Signal Processing and Analysis
Dubrovnik, Hrvatska, 2019. str. 49-53 doi:10.1109/ISPA.2019.8868639 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Zadro Matovinović, I., Lončarić Sven, Lo, J., Heisler, M. & Sarunic, M. (2019) Transfer Learning with U-Net type model for Automatic Segmentation of Three Retinal Layers In Optical Coherence Tomography Images. U: Proceedings of the 11th International Symposium on Image and Signal Processing and Analysis doi:10.1109/ISPA.2019.8868639.
@article{article, author = {Zadro Matovinovi\'{c}, Ivana and Lo, Julian and Heisler, Morgan and Sarunic, Marinko}, year = {2019}, pages = {49-53}, DOI = {10.1109/ISPA.2019.8868639}, keywords = {Age Related Macular Degeneration , OCT , Retinal Layer Segmentation , Transfer Learning , U-Net , ResNet34}, doi = {10.1109/ISPA.2019.8868639}, title = {Transfer Learning with U-Net type model for Automatic Segmentation of Three Retinal Layers In Optical Coherence Tomography Images}, keyword = {Age Related Macular Degeneration , OCT , Retinal Layer Segmentation , Transfer Learning , U-Net , ResNet34}, publisherplace = {Dubrovnik, Hrvatska} }
@article{article, author = {Zadro Matovinovi\'{c}, Ivana and Lo, Julian and Heisler, Morgan and Sarunic, Marinko}, year = {2019}, pages = {49-53}, DOI = {10.1109/ISPA.2019.8868639}, keywords = {Age Related Macular Degeneration , OCT , Retinal Layer Segmentation , Transfer Learning , U-Net , ResNet34}, doi = {10.1109/ISPA.2019.8868639}, title = {Transfer Learning with U-Net type model for Automatic Segmentation of Three Retinal Layers In Optical Coherence Tomography Images}, keyword = {Age Related Macular Degeneration , OCT , Retinal Layer Segmentation , Transfer Learning , U-Net , ResNet34}, publisherplace = {Dubrovnik, Hrvatska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font