Pregled bibliografske jedinice broj: 1077220
Fast facial expression recognition using local binary features and shallow neural networks
Fast facial expression recognition using local binary features and shallow neural networks // The visual computer, 36 (2018), 1; 97-112 doi:10.1007/s00371-018-1585-8 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1077220 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Fast facial expression recognition using local
binary features and shallow neural networks
Autori
Gogić, Ivan ; Manhart, Martina ; Pandžić, Igor S. ; Ahlberg, Jörgen
Izvornik
The visual computer (0178-2789) 36
(2018), 1;
97-112
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
facial expression recognition ; neural networks ; decision tree ensembles ; local binary features
Sažetak
Facial expression recognition applications demand accurate and fast algorithms that can run in real time on platforms with limited computational resources. We propose an algorithm that bridges the gap between precise but slow methods and fast but less precise methods. The algorithm combines gentle boost decision trees and neural networks. The gentle boost decision trees are trained to extract highly discriminative feature vectors (local binary features) for each basic facial expression around distinct facial landmark points. These sparse binary features are concatenated and used to jointly optimize facial expression recognition through a shallow neural network architecture. The joint optimization improves the recognition rates of difficult expressions such as fear and sadness. Furthermore, extensive experiments in both within- and cross-database scenarios have been conducted on relevant benchmark data sets for facial expression recognition: CK+, MMI, JAFFE, and SFEW 2.0. The proposed method (LBF-NN) compares favorably with state-of-the-art algorithms while achieving an order of magnitude improvement in execution time.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus