Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 107699

A sin 2\theta theorem for graded indefinite Hermitian matrices


Truhar, Ninoslav; Ren-Cang, Li
A sin 2\theta theorem for graded indefinite Hermitian matrices // Linear Algebra and its Applications, 359 (2003), 1-3; 263-276 doi:10.1016/S0024-3795(02)00424-X (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 107699 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A sin 2\theta theorem for graded indefinite Hermitian matrices

Autori
Truhar, Ninoslav ; Ren-Cang, Li

Izvornik
Linear Algebra and its Applications (0024-3795) 359 (2003), 1-3; 263-276

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
relative perturbation bounds ; invariant subspaces

Sažetak
This paper gives double angle theorems that bound the change in an invariant subspace of an indefinite Hermitian matrix in the graded form H=D^*AD subject to a perturbation H -> \tilde H=D^* (A+\Delta A)D. These theorems extend recent results on a definite Hermitian matrix in the graded form (Linear Algebra Appl. 311 (2000) 45) but the bounds here are more complicated in that they depend on not only relative gaps and norms of \Delta A as in the definite case but also norms of some J-unitary matrices, where J is diagonal with +1, -1 on its diagonal. For two special but interesting cases, bounds on these J-unitary matrices are obtained to show that their norms are of moderate magnitude.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
0023002
0235001

Ustanove:
Građevinski i arhitektonski fakultet Osijek

Profili:

Avatar Url Ninoslav Truhar (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Truhar, Ninoslav; Ren-Cang, Li
A sin 2\theta theorem for graded indefinite Hermitian matrices // Linear Algebra and its Applications, 359 (2003), 1-3; 263-276 doi:10.1016/S0024-3795(02)00424-X (međunarodna recenzija, članak, znanstveni)
Truhar, N. & Ren-Cang, L. (2003) A sin 2\theta theorem for graded indefinite Hermitian matrices. Linear Algebra and its Applications, 359 (1-3), 263-276 doi:10.1016/S0024-3795(02)00424-X.
@article{article, author = {Truhar, Ninoslav and Ren-Cang, Li}, year = {2003}, pages = {263-276}, DOI = {10.1016/S0024-3795(02)00424-X}, keywords = {relative perturbation bounds, invariant subspaces}, journal = {Linear Algebra and its Applications}, doi = {10.1016/S0024-3795(02)00424-X}, volume = {359}, number = {1-3}, issn = {0024-3795}, title = {A sin 2\theta theorem for graded indefinite Hermitian matrices}, keyword = {relative perturbation bounds, invariant subspaces} }
@article{article, author = {Truhar, Ninoslav and Ren-Cang, Li}, year = {2003}, pages = {263-276}, DOI = {10.1016/S0024-3795(02)00424-X}, keywords = {relative perturbation bounds, invariant subspaces}, journal = {Linear Algebra and its Applications}, doi = {10.1016/S0024-3795(02)00424-X}, volume = {359}, number = {1-3}, issn = {0024-3795}, title = {A sin 2\theta theorem for graded indefinite Hermitian matrices}, keyword = {relative perturbation bounds, invariant subspaces} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • The INSPEC Science Abstracts series
  • Mathematical Reviews
  • ABI/Inform
  • Cambridge Scientific Abstracts
  • Engineering Information Abstracts
  • ILAS-net
  • NA-net
  • Scopus
  • Zentralblatt MATH


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font