Pregled bibliografske jedinice broj: 107699
A sin 2\theta theorem for graded indefinite Hermitian matrices
A sin 2\theta theorem for graded indefinite Hermitian matrices // Linear Algebra and its Applications, 359 (2003), 1-3; 263-276 doi:10.1016/S0024-3795(02)00424-X (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 107699 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A sin 2\theta theorem for graded indefinite
Hermitian matrices
Autori
Truhar, Ninoslav ; Ren-Cang, Li
Izvornik
Linear Algebra and its Applications (0024-3795) 359
(2003), 1-3;
263-276
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
relative perturbation bounds ; invariant subspaces
Sažetak
This paper gives double angle theorems that bound the change in an invariant subspace of an indefinite Hermitian matrix in the graded form H=D^*AD subject to a perturbation H -> \tilde H=D^* (A+\Delta A)D. These theorems extend recent results on a definite Hermitian matrix in the graded form (Linear Algebra Appl. 311 (2000) 45) but the bounds here are more complicated in that they depend on not only relative gaps and norms of \Delta A as in the definite case but also norms of some J-unitary matrices, where J is diagonal with +1, -1 on its diagonal. For two special but interesting cases, bounds on these J-unitary matrices are obtained to show that their norms are of moderate magnitude.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Građevinski i arhitektonski fakultet Osijek
Profili:
Ninoslav Truhar
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- The INSPEC Science Abstracts series
- Mathematical Reviews
- ABI/Inform
- Cambridge Scientific Abstracts
- Engineering Information Abstracts
- ILAS-net
- NA-net
- Scopus
- Zentralblatt MATH