Pregled bibliografske jedinice broj: 1076874
Rotating Shaft Fault Prediction Using Convolutional Neural Network: A Preliminary Study
Rotating Shaft Fault Prediction Using Convolutional Neural Network: A Preliminary Study // Journal of KONES, 26 (2019), 3; 75-81 doi:10.2478/kones-2019-0060 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1076874 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Rotating Shaft Fault Prediction Using Convolutional Neural Network: A Preliminary Study
Autori
Kolar, Davor ; Lisjak, Dragutin ; Pająk, Michał
Izvornik
Journal of KONES (1231-4005) 26
(2019), 3;
75-81
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
condition-based maintenance, rotating systems, fault diagnosis, convolutional neural networks
Sažetak
Traditional data-driven techniques of fault diagnosis require signal processing for feature extraction, as they are unable to work with raw signal data, consequently leading to need for both expert knowledge and human work. The emergence of deep learning architectures in condition-based maintenance promises to ensure high performance fault diagnosis while lowering necessity for expert knowledge and human work. This article presents authors initial research in deep learning-based data-driven fault diagnosis of rotating subsystems. The proposed technique input raw three-axis accelerometer signal as high-definition image into deep learning layers, which automatically extract signal features, enabling high classification accuracy.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo, Tehnologija prometa i transport
POVEZANOST RADA
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- WorldCat database
- ResearchGate