Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1076124

Essential singularities of fractal zeta functions


Lapidus, Michel L.; Radunović, Goran; Žubrinić, Darko
Essential singularities of fractal zeta functions // Pure and Applied Functional Analysis, 5 (2020), 5; 1073-1094 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1076124 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Essential singularities of fractal zeta functions

Autori
Lapidus, Michel L. ; Radunović, Goran ; Žubrinić, Darko

Izvornik
Pure and Applied Functional Analysis (2189-3756) 5 (2020), 5; 1073-1094

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Fractal zeta function ; essential singularity ; complex dimension ; generalized Cantor set ; fractal string ; meromorphic function ; meromorphic continuation ; paramorphic function ; paramorphic continuation ; abscissa of paramorphic continuation ; power series of bounded fractal strings ; geometric zeta function ; distance zeta function ; paraharmonic function

Sažetak
We study the essential singularities of geometric zeta functions $\zeta_{; ; ; \mathcal L}; ; ; $, associated with bounded fractal strings $\mathcal L$. For any three prescribed real numbers $D_\ty$, $D_1$ and $D$ in $[0, 1]$, such that $D_\ty<D_1\le D$, we construct a bounded fractal string $\mathcal L$ such that $D_{; ; ; \rm par}; ; ; (\zeta_{; ; ; \mathcal L}; ; ; )=D_{; ; ; \ty}; ; ; $, $D_{; ; ; \rm mer}; ; ; (\zeta_{; ; ; \mathcal L}; ; ; )=D_1$ and $D(\zeta_{; ; ; \mathcal L}; ; ; )=D$. Here, $D(\zeta_{; ; ; \mathcal L}; ; ; )$ is the abscissa of absolute convergence of $\zeta_{; ; ; \mathcal L}; ; ; $, $D_{; ; ; \rm mer}; ; ; (\zeta_{; ; ; \mathcal L}; ; ; )$ is the abscissa of meromorphic continuation of $\zeta_{; ; ; \mathcal L}; ; ; $, while $D_{; ; ; \rm par}; ; ; (\zeta_{; ; ; \mathcal L}; ; ; )$ is the infimum of all real numbers $\a$ such that $\zeta_{; ; ; \mathcal L}; ; ; $ is holomorphic in the open right half-plane $\{; ; ; \re s>\a\}; ; ; $, except for possible isolated singularities in this half-plane. Defining $\mathcal L$ as the disjoint union of a sequence of suitable generalized Cantor strings, we show that the set of accumulation points of the set $S_\ty$ of essential singularities of $\zeta_{; ; ; \mathcal L}; ; ; $, contained in the open right half-plane $\{; ; ; \re s>D_{; ; ; \ty}; ; ; \}; ; ; $, coincides with the vertical line $\{; ; ; \re s=D_{; ; ; \ty}; ; ; \}; ; ; $. We extend this construction to the case of distance zeta functions $\zeta_A$ of compact sets $A$ in $\eR^N$, for any positive integer $N$.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2014-09-2285 - Geometrijska, ergodička i topološka analiza nisko-dimenzionalnih dinamičkih sustava (GETDYN) (Slijepčević, Siniša, HRZZ - 2014-09) ( CroRIS)
HRZZ-UIP-2017-05-1020 - Fraktalna analiza diskretnih dinamičkih sustava (DSfracta) (Resman, Maja, HRZZ - 2017-05) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Darko Žubrinić (autor)

Avatar Url Goran Radunović (autor)

Poveznice na cjeloviti tekst rada:

arxiv.org ui.adsabs.harvard.edu

Citiraj ovu publikaciju:

Lapidus, Michel L.; Radunović, Goran; Žubrinić, Darko
Essential singularities of fractal zeta functions // Pure and Applied Functional Analysis, 5 (2020), 5; 1073-1094 (međunarodna recenzija, članak, znanstveni)
Lapidus, M., Radunović, G. & Žubrinić, D. (2020) Essential singularities of fractal zeta functions. Pure and Applied Functional Analysis, 5 (5), 1073-1094.
@article{article, author = {Lapidus, Michel L. and Radunovi\'{c}, Goran and \v{Z}ubrini\'{c}, Darko}, year = {2020}, pages = {1073-1094}, keywords = {Fractal zeta function, essential singularity, complex dimension, generalized Cantor set, fractal string, meromorphic function, meromorphic continuation, paramorphic function, paramorphic continuation, abscissa of paramorphic continuation, power series of bounded fractal strings, geometric zeta function, distance zeta function, paraharmonic function}, journal = {Pure and Applied Functional Analysis}, volume = {5}, number = {5}, issn = {2189-3756}, title = {Essential singularities of fractal zeta functions}, keyword = {Fractal zeta function, essential singularity, complex dimension, generalized Cantor set, fractal string, meromorphic function, meromorphic continuation, paramorphic function, paramorphic continuation, abscissa of paramorphic continuation, power series of bounded fractal strings, geometric zeta function, distance zeta function, paraharmonic function} }
@article{article, author = {Lapidus, Michel L. and Radunovi\'{c}, Goran and \v{Z}ubrini\'{c}, Darko}, year = {2020}, pages = {1073-1094}, keywords = {Fractal zeta function, essential singularity, complex dimension, generalized Cantor set, fractal string, meromorphic function, meromorphic continuation, paramorphic function, paramorphic continuation, abscissa of paramorphic continuation, power series of bounded fractal strings, geometric zeta function, distance zeta function, paraharmonic function}, journal = {Pure and Applied Functional Analysis}, volume = {5}, number = {5}, issn = {2189-3756}, title = {Essential singularities of fractal zeta functions}, keyword = {Fractal zeta function, essential singularity, complex dimension, generalized Cantor set, fractal string, meromorphic function, meromorphic continuation, paramorphic function, paramorphic continuation, abscissa of paramorphic continuation, power series of bounded fractal strings, geometric zeta function, distance zeta function, paraharmonic function} }

Uključenost u ostale bibliografske baze podataka::


  • MathSciNet





Contrast
Increase Font
Decrease Font
Dyslexic Font