Pregled bibliografske jedinice broj: 1076124
Essential singularities of fractal zeta functions
Essential singularities of fractal zeta functions // Pure and Applied Functional Analysis, 5 (2020), 5; 1073-1094 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1076124 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Essential singularities of fractal zeta functions
Autori
Lapidus, Michel L. ; Radunović, Goran ; Žubrinić, Darko
Izvornik
Pure and Applied Functional Analysis (2189-3756) 5
(2020), 5;
1073-1094
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Fractal zeta function ; essential singularity ; complex dimension ; generalized Cantor set ; fractal string ; meromorphic function ; meromorphic continuation ; paramorphic function ; paramorphic continuation ; abscissa of paramorphic continuation ; power series of bounded fractal strings ; geometric zeta function ; distance zeta function ; paraharmonic function
Sažetak
We study the essential singularities of geometric zeta functions $\zeta_{; ; ; \mathcal L}; ; ; $, associated with bounded fractal strings $\mathcal L$. For any three prescribed real numbers $D_\ty$, $D_1$ and $D$ in $[0, 1]$, such that $D_\ty<D_1\le D$, we construct a bounded fractal string $\mathcal L$ such that $D_{; ; ; \rm par}; ; ; (\zeta_{; ; ; \mathcal L}; ; ; )=D_{; ; ; \ty}; ; ; $, $D_{; ; ; \rm mer}; ; ; (\zeta_{; ; ; \mathcal L}; ; ; )=D_1$ and $D(\zeta_{; ; ; \mathcal L}; ; ; )=D$. Here, $D(\zeta_{; ; ; \mathcal L}; ; ; )$ is the abscissa of absolute convergence of $\zeta_{; ; ; \mathcal L}; ; ; $, $D_{; ; ; \rm mer}; ; ; (\zeta_{; ; ; \mathcal L}; ; ; )$ is the abscissa of meromorphic continuation of $\zeta_{; ; ; \mathcal L}; ; ; $, while $D_{; ; ; \rm par}; ; ; (\zeta_{; ; ; \mathcal L}; ; ; )$ is the infimum of all real numbers $\a$ such that $\zeta_{; ; ; \mathcal L}; ; ; $ is holomorphic in the open right half-plane $\{; ; ; \re s>\a\}; ; ; $, except for possible isolated singularities in this half-plane. Defining $\mathcal L$ as the disjoint union of a sequence of suitable generalized Cantor strings, we show that the set of accumulation points of the set $S_\ty$ of essential singularities of $\zeta_{; ; ; \mathcal L}; ; ; $, contained in the open right half-plane $\{; ; ; \re s>D_{; ; ; \ty}; ; ; \}; ; ; $, coincides with the vertical line $\{; ; ; \re s=D_{; ; ; \ty}; ; ; \}; ; ; $. We extend this construction to the case of distance zeta functions $\zeta_A$ of compact sets $A$ in $\eR^N$, for any positive integer $N$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2014-09-2285 - Geometrijska, ergodička i topološka analiza nisko-dimenzionalnih dinamičkih sustava (GETDYN) (Slijepčević, Siniša, HRZZ - 2014-09) ( CroRIS)
HRZZ-UIP-2017-05-1020 - Fraktalna analiza diskretnih dinamičkih sustava (DSfracta) (Resman, Maja, HRZZ - 2017-05) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- MathSciNet