Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1076102

Coupon Bond Duration and Convexity Analysis: A Non-Calculus Approach


Kojić, Vedran; Gardijan Kedžo, Margareta; Lukač, Zrinka
Coupon Bond Duration and Convexity Analysis: A Non-Calculus Approach // Recent Applications of Financial Risk Modelling and Portfolio Management / Škrinjarić, Tihana ; Čižmešija, Mirjana ; Christiansen, Bryan (ur.) (ur.).
Hershey (PA): IGI Global, 2021. str. 316-345 doi:10.4018/978-1-7998-5083-0.ch016


CROSBI ID: 1076102 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Coupon Bond Duration and Convexity Analysis: A Non-Calculus Approach

Autori
Kojić, Vedran ; Gardijan Kedžo, Margareta ; Lukač, Zrinka

Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni

Knjiga
Recent Applications of Financial Risk Modelling and Portfolio Management

Urednik/ci
Škrinjarić, Tihana ; Čižmešija, Mirjana ; Christiansen, Bryan (ur.)

Izdavač
IGI Global

Grad
Hershey (PA)

Godina
2021

Raspon stranica
316-345

ISBN
9781799850830

ISSN
2327-5677

Ključne riječi
Macaulay’s Duration ; Bond Convexity ; Bond Duration and Convexity Properties ; Elementary Algebra, ; Finite Sums ; Sequence of Real Numbers ; The Principle of Archimedes ; Without Calculus

Sažetak
Coupon bond duration and convexity are the primary risk measures for bonds. Given their importance, there is abundant literature covering their analysis, with calculus being used as the dominant approach. On the other hand, some authors have treated coupon bond duration and convexity without the use of differential calculus. However, none of them provided a complete analysis of bond duration and convexity properties. Therefore, this chapter fills in the gap. Since the application of calculus may be complicated or even inappropriate if the functions in question are not differentiable (as indeed is the case with the bond duration and convexity functions), in this chapter the properties of bond duration and convexity functions by using elementary algebra only are proved. This provides an easier way of approaching this problem, thus making it accessible to a wider audience not necessarily familiar with tools of mathematical analysis. Finally, the properties of these functions are illustrated by using empirical data on coupon bonds.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Ekonomija



POVEZANOST RADA


Ustanove:
Ekonomski fakultet, Zagreb

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Kojić, Vedran; Gardijan Kedžo, Margareta; Lukač, Zrinka
Coupon Bond Duration and Convexity Analysis: A Non-Calculus Approach // Recent Applications of Financial Risk Modelling and Portfolio Management / Škrinjarić, Tihana ; Čižmešija, Mirjana ; Christiansen, Bryan (ur.) (ur.).
Hershey (PA): IGI Global, 2021. str. 316-345 doi:10.4018/978-1-7998-5083-0.ch016
Kojić, V., Gardijan Kedžo, M. & Lukač, Z. (2021) Coupon Bond Duration and Convexity Analysis: A Non-Calculus Approach. U: Škrinjarić, T., Čižmešija, M. & Christiansen, B. (ur.) Recent Applications of Financial Risk Modelling and Portfolio Management. Hershey (PA), IGI Global, str. 316-345 doi:10.4018/978-1-7998-5083-0.ch016.
@inbook{inbook, author = {Koji\'{c}, Vedran and Gardijan Ked\v{z}o, Margareta and Luka\v{c}, Zrinka}, year = {2021}, pages = {316-345}, DOI = {10.4018/978-1-7998-5083-0.ch016}, keywords = {Macaulay’s Duration, Bond Convexity, Bond Duration and Convexity Properties, Elementary Algebra,, Finite Sums, Sequence of Real Numbers, The Principle of Archimedes, Without Calculus}, doi = {10.4018/978-1-7998-5083-0.ch016}, isbn = {9781799850830}, issn = {2327-5677}, title = {Coupon Bond Duration and Convexity Analysis: A Non-Calculus Approach}, keyword = {Macaulay’s Duration, Bond Convexity, Bond Duration and Convexity Properties, Elementary Algebra,, Finite Sums, Sequence of Real Numbers, The Principle of Archimedes, Without Calculus}, publisher = {IGI Global}, publisherplace = {Hershey (PA)} }
@inbook{inbook, author = {Koji\'{c}, Vedran and Gardijan Ked\v{z}o, Margareta and Luka\v{c}, Zrinka}, year = {2021}, pages = {316-345}, DOI = {10.4018/978-1-7998-5083-0.ch016}, keywords = {Macaulay’s Duration, Bond Convexity, Bond Duration and Convexity Properties, Elementary Algebra,, Finite Sums, Sequence of Real Numbers, The Principle of Archimedes, Without Calculus}, doi = {10.4018/978-1-7998-5083-0.ch016}, isbn = {9781799850830}, issn = {2327-5677}, title = {Coupon Bond Duration and Convexity Analysis: A Non-Calculus Approach}, keyword = {Macaulay’s Duration, Bond Convexity, Bond Duration and Convexity Properties, Elementary Algebra,, Finite Sums, Sequence of Real Numbers, The Principle of Archimedes, Without Calculus}, publisher = {IGI Global}, publisherplace = {Hershey (PA)} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font