Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1076014

Cross-Entropy based Stochastic Optimization of Robot Trajectories using Heteroscedastic Continuous-time Gaussian Processes


Petrović, Luka; Peršić, Juraj; Seder, Marija; Marković, Ivan
Cross-Entropy based Stochastic Optimization of Robot Trajectories using Heteroscedastic Continuous-time Gaussian Processes // Robotics and autonomous systems, 133 (2020), 103618, 14 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1076014 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Cross-Entropy based Stochastic Optimization of Robot Trajectories using Heteroscedastic Continuous-time Gaussian Processes

Autori
Petrović, Luka ; Peršić, Juraj ; Seder, Marija ; Marković, Ivan

Izvornik
Robotics and autonomous systems (0921-8890) 133 (2020); 103618, 14

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
robot motion planning ; trajectory optimization ; continuous-time gaussian processes ; stochastic optimization ; cluttered environments

Sažetak
High dimensional robot motion planning has recently been approached with trajectory optimization methods that efficiently minimize a suitable objective function in order to generate robot trajectories that are both optimal and feasible. However, finding a globally optimal solution is often an insurmountable problem in practice and state-of-the-art trajectory optimization methods are thus prone to local minima, mainly in cluttered environments. In this paper, we propose a novel trajectory planning algorithm that employs stochastic optimization in order to find a collision-free trajectory generated from a continuous-time Gaussian process (GP). The contributions of the proposed motion planning method stem from introducing the heteroscedasticity of the GP, together with exploited sparsity for efficient covariance estimation, and a cross-entropy based stochastic optimization for importance sampling based trajectory optimization. We evaluate the proposed method on three simulated scenarios: a maze benchmark, a 7 DOF robot arm planning benchmark and a 10 DOF mobile manipulator trajectory planning example and compare it to a state-of-the-art GP trajectory optimization method, namely the Gaussian process motion planner 2 algorithm (GPMP2). Our results demonstrate the following: (i) the proposed method yields a more thorough exploration of the solution space in complex environments than GPMP2, while having comparable execution time, (ii) the introduced heteroscedasticity generates GP priors better suited for collision avoidance and (iii) the proposed method has the ability to efficiently tackle high-dimensional trajectory planning problems.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Ivan Marković (autor)

Avatar Url Luka Petrović (autor)

Avatar Url Juraj Peršić (autor)

Avatar Url Marija Seder (autor)


Citiraj ovu publikaciju:

Petrović, Luka; Peršić, Juraj; Seder, Marija; Marković, Ivan
Cross-Entropy based Stochastic Optimization of Robot Trajectories using Heteroscedastic Continuous-time Gaussian Processes // Robotics and autonomous systems, 133 (2020), 103618, 14 (međunarodna recenzija, članak, znanstveni)
Petrović, L., Peršić, J., Seder, M. & Marković, I. (2020) Cross-Entropy based Stochastic Optimization of Robot Trajectories using Heteroscedastic Continuous-time Gaussian Processes. Robotics and autonomous systems, 133, 103618, 14.
@article{article, author = {Petrovi\'{c}, Luka and Per\v{s}i\'{c}, Juraj and Seder, Marija and Markovi\'{c}, Ivan}, year = {2020}, pages = {14}, chapter = {103618}, keywords = {robot motion planning, trajectory optimization, continuous-time gaussian processes, stochastic optimization, cluttered environments}, journal = {Robotics and autonomous systems}, volume = {133}, issn = {0921-8890}, title = {Cross-Entropy based Stochastic Optimization of Robot Trajectories using Heteroscedastic Continuous-time Gaussian Processes}, keyword = {robot motion planning, trajectory optimization, continuous-time gaussian processes, stochastic optimization, cluttered environments}, chapternumber = {103618} }
@article{article, author = {Petrovi\'{c}, Luka and Per\v{s}i\'{c}, Juraj and Seder, Marija and Markovi\'{c}, Ivan}, year = {2020}, pages = {14}, chapter = {103618}, keywords = {robot motion planning, trajectory optimization, continuous-time gaussian processes, stochastic optimization, cluttered environments}, journal = {Robotics and autonomous systems}, volume = {133}, issn = {0921-8890}, title = {Cross-Entropy based Stochastic Optimization of Robot Trajectories using Heteroscedastic Continuous-time Gaussian Processes}, keyword = {robot motion planning, trajectory optimization, continuous-time gaussian processes, stochastic optimization, cluttered environments}, chapternumber = {103618} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font