Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1074633

Streamlining visualisation of geographical data through statistical programming tools


Brebric, Marina; Vranic, Mihaela; Pintar, Damir
Streamlining visualisation of geographical data through statistical programming tools // Proceedings of the First International Colloquium on Smart Grid Metrology (SmaGriMet) / Jurčević, Marko ; Ivšić, Branimir ; Dadić, Martin (ur.).
Split, Hrvatska: Institute of Electrical and Electronics Engineers (IEEE), 2018. 151, 5 doi:10.23919/smagrimet.2018.8369853 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1074633 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Streamlining visualisation of geographical data through statistical programming tools

Autori
Brebric, Marina ; Vranic, Mihaela ; Pintar, Damir

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the First International Colloquium on Smart Grid Metrology (SmaGriMet) / Jurčević, Marko ; Ivšić, Branimir ; Dadić, Martin - : Institute of Electrical and Electronics Engineers (IEEE), 2018

ISBN
978-953-184-235-8

Skup
First International Colloquium on Smart Grid Metrology (SmaGriMet 2018)

Mjesto i datum
Split, Hrvatska, 24.04.2018. - 27.04.2018

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
visualisation, GIS, geostatistical data, R programming language

Sažetak
In a world where the daily amount of generated data is overwhelming, it is getting increasingly difficult to extract useful information in a concise, easily interpretable format. Statistical data gets lost in big tables and linear graphs and people fail to connect them to a real-world phenomena. A good example for this is statistical data related to geographical regions - without visualising the geographical data that lies under the statistics, it is hard to conceive and understand the data. By combining these two aspects of the data, visualising them gets a lot simpler, the information presented is denser and more visually interesting to the observer. Naturally, there is more to it than just using two raw datasets and visualising them - it is extremely important to make sure the data collected is correct, standardised, and reusable as well as making the visualisations as close to the subject at hand as possible. It is important to consider various aspects such as the audience, to identify which combination of colour and size works best to highlight the data and whether to use relative or absolute statistical data (or showing both side by side). The paper gives an overview of common issues regarding to the collection of statistical and geographical data, and presents our solution for streamlining the visualization of geographical statistical data.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Mihaela Vranić (autor)

Avatar Url Damir Pintar (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Brebric, Marina; Vranic, Mihaela; Pintar, Damir
Streamlining visualisation of geographical data through statistical programming tools // Proceedings of the First International Colloquium on Smart Grid Metrology (SmaGriMet) / Jurčević, Marko ; Ivšić, Branimir ; Dadić, Martin (ur.).
Split, Hrvatska: Institute of Electrical and Electronics Engineers (IEEE), 2018. 151, 5 doi:10.23919/smagrimet.2018.8369853 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Brebric, M., Vranic, M. & Pintar, D. (2018) Streamlining visualisation of geographical data through statistical programming tools. U: Jurčević, M., Ivšić, B. & Dadić, M. (ur.)Proceedings of the First International Colloquium on Smart Grid Metrology (SmaGriMet) doi:10.23919/smagrimet.2018.8369853.
@article{article, author = {Brebric, Marina and Vranic, Mihaela and Pintar, Damir}, year = {2018}, pages = {5}, DOI = {10.23919/smagrimet.2018.8369853}, chapter = {151}, keywords = {visualisation, GIS, geostatistical data, R programming language}, doi = {10.23919/smagrimet.2018.8369853}, isbn = {978-953-184-235-8}, title = {Streamlining visualisation of geographical data through statistical programming tools}, keyword = {visualisation, GIS, geostatistical data, R programming language}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Split, Hrvatska}, chapternumber = {151} }
@article{article, author = {Brebric, Marina and Vranic, Mihaela and Pintar, Damir}, year = {2018}, pages = {5}, DOI = {10.23919/smagrimet.2018.8369853}, chapter = {151}, keywords = {visualisation, GIS, geostatistical data, R programming language}, doi = {10.23919/smagrimet.2018.8369853}, isbn = {978-953-184-235-8}, title = {Streamlining visualisation of geographical data through statistical programming tools}, keyword = {visualisation, GIS, geostatistical data, R programming language}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Split, Hrvatska}, chapternumber = {151} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font