Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1074629

Improving Sentence Retrieval Using Sequence Similarity


Boban, Ivan; Doko, Alen; Gotovac, Sven
Improving Sentence Retrieval Using Sequence Similarity // Applied Sciences-Basel, 10 (2020), 12; 1-11 doi:10.3390/app10124316 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1074629 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Improving Sentence Retrieval Using Sequence Similarity

Autori
Boban, Ivan ; Doko, Alen ; Gotovac, Sven

Izvornik
Applied Sciences-Basel (2076-3417) 10 (2020), 12; 1-11

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
sentence retrieval ; TF−ISF ; BM25 ; language modeling ; partial match ; sequence similarity

Sažetak
Sentence retrieval is an information retrieval technique that aims to find sentences corresponding to an information need. It is used for tasks like question answering (QA) or novelty detection. Since it is similar to document retrieval but with a smaller unit of retrieval, methods for document retrieval are also used for sentence retrieval like term frequency—inverse document frequency (TF-IDF), BM25 , and language modeling-based methods. The effect of partial matching of words to sentence retrieval is an issue that has not been analyzed. We think that there is a substantial potential for the improvement of sentence retrieval methods if we consider this approach. We adapted TF-ISF, BM25 , and language modeling-based methods to test the partial matching of terms through combining sentence retrieval with sequence similarity, which allows matching of words that are similar but not identical. All tests were conducted using data from the novelty tracks of the Text Retrieval Conference (TREC). The scope of this paper was to find out if such approach is generally beneficial to sentence retrieval. However, we did not examine in depth how partial matching helps or hinders the finding of relevant sentences.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Profili:

Avatar Url Sven Gotovac (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi www.mdpi.com

Citiraj ovu publikaciju:

Boban, Ivan; Doko, Alen; Gotovac, Sven
Improving Sentence Retrieval Using Sequence Similarity // Applied Sciences-Basel, 10 (2020), 12; 1-11 doi:10.3390/app10124316 (međunarodna recenzija, članak, znanstveni)
Boban, I., Doko, A. & Gotovac, S. (2020) Improving Sentence Retrieval Using Sequence Similarity. Applied Sciences-Basel, 10 (12), 1-11 doi:10.3390/app10124316.
@article{article, author = {Boban, Ivan and Doko, Alen and Gotovac, Sven}, year = {2020}, pages = {1-11}, DOI = {10.3390/app10124316}, keywords = {sentence retrieval, TF−ISF, BM25, language modeling, partial match, sequence similarity}, journal = {Applied Sciences-Basel}, doi = {10.3390/app10124316}, volume = {10}, number = {12}, issn = {2076-3417}, title = {Improving Sentence Retrieval Using Sequence Similarity}, keyword = {sentence retrieval, TF−ISF, BM25, language modeling, partial match, sequence similarity} }
@article{article, author = {Boban, Ivan and Doko, Alen and Gotovac, Sven}, year = {2020}, pages = {1-11}, DOI = {10.3390/app10124316}, keywords = {sentence retrieval, TF−ISF, BM25, language modeling, partial match, sequence similarity}, journal = {Applied Sciences-Basel}, doi = {10.3390/app10124316}, volume = {10}, number = {12}, issn = {2076-3417}, title = {Improving Sentence Retrieval Using Sequence Similarity}, keyword = {sentence retrieval, TF−ISF, BM25, language modeling, partial match, sequence similarity} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font