Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1073152

Predictive Modelling of Academic Performance by Means of Bayesian Networks


Oreški, Dijana; Konecki, Mario; Pihir, Igor
Predictive Modelling of Academic Performance by Means of Bayesian Networks // 47th International Scientific Conference on Economic and Social Development, Book of Proceedings / Konecki, Mario ; Kedmenec, Irena ; Kuruvilla, Abey (ur.).
Prag: VADEA ; Novosibirsk State University of Economics and Management, Novosibirsk, Russia ; Sveučilište Sjever, 2019. str. 435-441 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1073152 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Predictive Modelling of Academic Performance by Means of Bayesian Networks

Autori
Oreški, Dijana ; Konecki, Mario ; Pihir, Igor

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
47th International Scientific Conference on Economic and Social Development, Book of Proceedings / Konecki, Mario ; Kedmenec, Irena ; Kuruvilla, Abey - Prag : VADEA ; Novosibirsk State University of Economics and Management, Novosibirsk, Russia ; Sveučilište Sjever, 2019, 435-441

Skup
47th International Scientific Conference on Economic and Social Development

Mjesto i datum
Prag, Češka Republika, 14.11.2019. - 15.11.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
bayesian networks, academic success, data mining, CRISP DM process model

Sažetak
Predicting academic performance is an often- required task in Higher Education field. Development of data mining, especially educational data mining (EDM) provided algorithms for effective data analysis with the aim to improve quality of the educational processes. In this paper, probability based approach to machine learning (Bayesian networks) is applied in order to predict academic performance of IT students based on data about their socio- demographic characteristics, attitudes, motivation and behavior. Main aim of presented research was twofold: (i) to predict students’ academic performance and to identify most significant predictors of students` success, (ii) to investigate possibilities of probability based machine learning approach for developing predictive models in educational domain. Research results indicated high level of potential for Bayesian networks application on educational datasets.

Izvorni jezik
Engleski

Znanstvena područja
Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Fakultet organizacije i informatike, Varaždin

Profili:

Avatar Url Igor Pihir (autor)

Avatar Url Dijana Oreški (autor)

Avatar Url Mario Konecki (autor)

Citiraj ovu publikaciju:

Oreški, Dijana; Konecki, Mario; Pihir, Igor
Predictive Modelling of Academic Performance by Means of Bayesian Networks // 47th International Scientific Conference on Economic and Social Development, Book of Proceedings / Konecki, Mario ; Kedmenec, Irena ; Kuruvilla, Abey (ur.).
Prag: VADEA ; Novosibirsk State University of Economics and Management, Novosibirsk, Russia ; Sveučilište Sjever, 2019. str. 435-441 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Oreški, D., Konecki, M. & Pihir, I. (2019) Predictive Modelling of Academic Performance by Means of Bayesian Networks. U: Konecki, M., Kedmenec, I. & Kuruvilla, A. (ur.)47th International Scientific Conference on Economic and Social Development, Book of Proceedings.
@article{article, author = {Ore\v{s}ki, Dijana and Konecki, Mario and Pihir, Igor}, year = {2019}, pages = {435-441}, keywords = {bayesian networks, academic success, data mining, CRISP DM process model}, title = {Predictive Modelling of Academic Performance by Means of Bayesian Networks}, keyword = {bayesian networks, academic success, data mining, CRISP DM process model}, publisher = {VADEA ; Novosibirsk State University of Economics and Management, Novosibirsk, Russia ; Sveu\v{c}ili\v{s}te Sjever}, publisherplace = {Prag, \v{C}e\v{s}ka Republika} }
@article{article, author = {Ore\v{s}ki, Dijana and Konecki, Mario and Pihir, Igor}, year = {2019}, pages = {435-441}, keywords = {bayesian networks, academic success, data mining, CRISP DM process model}, title = {Predictive Modelling of Academic Performance by Means of Bayesian Networks}, keyword = {bayesian networks, academic success, data mining, CRISP DM process model}, publisher = {VADEA ; Novosibirsk State University of Economics and Management, Novosibirsk, Russia ; Sveu\v{c}ili\v{s}te Sjever}, publisherplace = {Prag, \v{C}e\v{s}ka Republika} }

Časopis indeksira:


  • HeinOnline





Contrast
Increase Font
Decrease Font
Dyslexic Font