Pregled bibliografske jedinice broj: 1073152
Predictive Modelling of Academic Performance by Means of Bayesian Networks
Predictive Modelling of Academic Performance by Means of Bayesian Networks // 47th International Scientific Conference on Economic and Social Development, Book of Proceedings / Konecki, Mario ; Kedmenec, Irena ; Kuruvilla, Abey (ur.).
Prag: VADEA ; Novosibirsk State University of Economics and Management, Novosibirsk, Russia ; Sveučilište Sjever, 2019. str. 435-441 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1073152 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Predictive Modelling of Academic Performance by
Means of Bayesian Networks
Autori
Oreški, Dijana ; Konecki, Mario ; Pihir, Igor
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
47th International Scientific Conference on Economic and Social Development, Book of Proceedings
/ Konecki, Mario ; Kedmenec, Irena ; Kuruvilla, Abey - Prag : VADEA ; Novosibirsk State University of Economics and Management, Novosibirsk, Russia ; Sveučilište Sjever, 2019, 435-441
Skup
47th International Scientific Conference on Economic and Social Development
Mjesto i datum
Prag, Češka Republika, 14.11.2019. - 15.11.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
bayesian networks, academic success, data mining, CRISP DM process model
Sažetak
Predicting academic performance is an often- required task in Higher Education field. Development of data mining, especially educational data mining (EDM) provided algorithms for effective data analysis with the aim to improve quality of the educational processes. In this paper, probability based approach to machine learning (Bayesian networks) is applied in order to predict academic performance of IT students based on data about their socio- demographic characteristics, attitudes, motivation and behavior. Main aim of presented research was twofold: (i) to predict students’ academic performance and to identify most significant predictors of students` success, (ii) to investigate possibilities of probability based machine learning approach for developing predictive models in educational domain. Research results indicated high level of potential for Bayesian networks application on educational datasets.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet organizacije i informatike, Varaždin
Citiraj ovu publikaciju:
Časopis indeksira:
- HeinOnline