Pregled bibliografske jedinice broj: 1069287
A Different Approach for Clique and Household Analysis in Synthetic Telecom Data Using Propositional Logic
A Different Approach for Clique and Household Analysis in Synthetic Telecom Data Using Propositional Logic // 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO) / Koričić, Marko et al. (ur.).
Opatija : Rijeka : Zagreb: IEEE Explore, 2020. str. 1286-1289 doi:10.23919/MIPRO48935.2020.9245421 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1069287 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Different Approach for Clique and Household
Analysis in Synthetic Telecom Data Using
Propositional Logic
Autori
Skansi, Sandro ; Šekrst, Kristina ; Kardum, Marko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO)
/ Koričić, Marko et al. - Opatija : Rijeka : Zagreb : IEEE Explore, 2020, 1286-1289
Skup
43rd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2020)
Mjesto i datum
Opatija, Hrvatska, 28.09.2020. - 02.10.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Clique Detection ; SAT Solving ; DPLL ; Household Identification ; SAT encodings ; Telecom Data Analysis
Sažetak
In this paper we propose an non-machine learning artificial intelligence (AI) based approach for telecom data analysis, with a special focus on clique detection. Clique detection can be used to identify households, which is a major challenge in telecom data analysis and predictive analytics. Our approach does not use any form of machine learning, but another type of algorithm: satisfiability for propositional logic. This is a neglected approach in modern AI, and we aim to demonstrate that for certain tasks, it may be a good alternative to machine learning-based approaches. We have used a simple DPLL satisfiability solver over an artificially generated telecom dataset (due to GDPR regulations), but our approach can be implemented on any telecom data by following the SAT encoding we have developed, and the DPLL solver can be substituted by a more advanced alternative such as CDCL. This paper extends the method presented in [1] for banking logs to data containing caller information, and proposes a more efficient encoding.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Filozofija
POVEZANOST RADA
Ustanove:
Fakultet hrvatskih studija, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus